
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Testing

How do we ensure correctness?

Best practice: use three techniques

1. Tools
– e.g., type checking, @Override, libraries, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Winter 2020 27

How do we ensure correctness?

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

-Donald Knuth, 1977

Trying it is a surprisingly useful way to find mistakes!

No single activity or approach can guarantee correctness

We need tools and inspection and testing to ensure correctness

28CSE 331 Winter 2020

It’s hard to test your own code

Your psychology is fighting against you:
• confirmation bias

– tendency to avoid evidence that you’re wrong
• operant conditioning

– programmers get cookies when the code works
– testers get cookies when the code breaks

You can avoid some effects of confirmation bias by

writing most of your tests before the code

Not much you can do about operant conditioning

29CSE 331 Winter 2020

Testing Tips

• Write tests both before and after you write the code
– (only clear-box tests need to come afterward)

• Be systematic: think through revealing subdomains & test each one

• ...

30CSE 331 Winter 2020

Kinds of testing

• Testing field has terminology for different kinds of tests
– we won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 8 varieties total]:

– unit testing versus system/integration testing
• one module’s functionality versus pieces fitting together

– black-box testing versus clear-box testing
• did you look at the code before writing the test?

– specification testing versus implementation testing
• test only behavior guaranteed by specification or other

behavior expected for the implementation

CSE 331 Winter 2020 31

Unit Testing

• A unit test focuses on one class / module (or even less)
– could write a unit test for a single method

• Tests a single unit in isolation from all others

• Integration tests verify that the modules fit together properly
– usually don’t want these until the units are well tested

• i.e., unit tests come first

32CSE 331 Winter 2020

How is testing done?

Write the test
1) Choose input / configuration
2) Define the expected outcome

Run the test
3) Run with input and record the actual outcome
4) Compare actual outcome to expected outcome

33CSE 331 Winter 2020

What’s So Hard About Testing?

“Just try it and see if it works...”

// requires: 1 ≤ x,y,z ≤ 10000
// returns: computes some f(x,y,z)
int func1(int x, int y, int z){…}

Exhaustive testing would require 1 trillion runs!
– impractical even for this trivially small problem

Key problem: choosing test suite
– Large/diverse enough to provide a useful amount of validation
– (Small enough to write/run in reasonable amount of time.)

• less important... very few projects have too many tests

34CSE 331 Winter 2020

Approach: Partition the Input Space

Ideal test suite:
Identify sets with “same behavior”

(actual and expected)
Test at least one input from each set

(we call this set a subdomain)

Problem: we don’t know the behavior on all inputs
– if we did, we wouldn’t need to test!

35CSE 331 Winter 2020

Revealing Subdomains

• A subdomain is a subset of possible inputs

• A subdomain is revealing for error E if either:
– every input in that subdomain triggers error E, or
– no input in that subdomain triggers error E

• Need test at least one input from a revealing subdomain to find bug
– if you test one input from every revealing subdomain for E,

you are guaranteed to find the bug

• The trick is to guess revealing subdomains for the errors present
– even though your reasoning says your code is correct,

make educated guesses where the bugs might be
36CSE 331 Winter 2020

Testing Heuristics

• Testing is essential but difficult
– want set of tests likely to reveal the bugs present
– but we don’t know where the bugs are

• Our approach:
– split the input space into enough subsets (subdomains)

such that inputs in each one are likely all correct or incorrect
– can then take just one example from each subdomain

• Some heuristics are useful for choosing
subdomains...

CSE 331 Winter 2020 37

Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is a black box: specification visible, internals hidden

Example
// returns: a > b => returns a
// a < b => returns b
// a = b => returns a
int max(int a, int b) {…}

3 cases lead to 3 tests
(4, 3) => 4 (i.e. any input in the subdomain a > b)
(3, 4) => 4 (i.e. any input in the subdomain a < b)
(3, 3) => 3 (i.e. any input in the subdomain a = b)

38CSE 331 Winter 2020

More Complex Example

Write tests based on cases in the specification
// returns: the smallest i such
// that a[i] == value
// throws: Missing if value is not in a
int find(int[] a, int value) throws Missing

Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

Have we captured all the cases?

Must hunt for multiple cases
– Including scrutiny of effects and modifies

39

([4, 5, 5], 5) => 1

CSE 331 Winter 2020

Specification Testing: Advantages

Process is not influenced by component being tested
– avoids psychological biases we discussed earlier
– can only do this for your own code if you write tests first

Robust with respect to changes in implementation
– test data need not be changed when code is changed

Allows others to test the code (rare nowadays)

40CSE 331 Winter 2020

Heuristic: Clear (glass, white)-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– performance optimizations
– alternate algorithms for different cases

41CSE 331 Winter 2020

Clear-box Example
There are some subdomains that black-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i <= x/2; i++) {
if (x % i == 0)
return false;

}
return true;

} else {
return primeTable[x];

}
}

42CSE 331 Winter 2020

Combining Clear- and Black-Box

For buggy abs, what are revealing subdomains?

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else return x;

}

Example sets of subdomains:
– Which is best?

Why not:

… {-2} {-1} {0} {1} …
{…, -4, -3} {-2, -1} {0, 1, …}

CSE 331 Winter 2020 43

{…,-6, -5, -4} {-3, -2, -1} {0, 1, 2, …}

Heuristic: Boundary & Special Cases

Create tests at the edges of subdomains

Why?
– Off-by-one bugs
– “Empty” cases (0 elements, null, …)
– Overflow errors in arithmetic
– Object aliasing

Small subdomains at the edges of the “main” subdomains have a high
probability of revealing many common errors

– also, you might have misdrawn the boundaries

44CSE 331 Winter 2020

Boundary Testing

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– there is no point to one side

Example: function has different behavior on n and n+1

45CSE 331 Winter 2020

Boundary Cases: Integers
// returns: |x|
public int abs(int x) {…}

What are some values or ranges of x that might be worth probing?
– x < 0 (flips sign) or x ≥ 0 (returns unchanged)
– Around x = 0 (boundary condition)
– Specific tests: say x = -1, 0, 1

46CSE 331 Winter 2020

Boundary Testing

To define the boundary, need a notion of adjacent inputs

Example approach:
– identify basic operations on input points
– two points are adjacent if one basic operation apart

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– some basic operation cannot be applied to the point

Example: list of integers
– basic operations: create, append, set, remove
– adjacent points: <[2,3],[2,4]>, <[2,3],[2,3,3]>, <[2,3],[2]>
– boundary point: [] (can’t apply remove)

47CSE 331 Winter 2020

Heuristic: Special Cases

Arithmetic
– smallest/largest values
– zero

Objects
– null
– list containing itself

• maybe a bit too pathological

– same object passed as multiple arguments (aliasing)

All of these are common cases where bugs lurk
• you’ll find more as you encounter more bugs

48CSE 331 Winter 2020

Special Cases: Arithmetic Overflow
// returns: |x|
public int abs(int x) {…}

How about…
int x = Integer.MIN_VALUE; // x=-2147483648
System.out.println(x<0); // true
System.out.println(Math.abs(x)<0); // also true!

From Javadoc for Math.abs:
Note that if the argument is equal to the value of
Integer.MIN_VALUE, the most negative representable int
value, the result is that same value, which is negative

49CSE 331 Winter 2020

Special Cases: Duplicates & Aliases

// modifies: src, dest
// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest
<E> void appendList(List<E> src, List<E> dest) {
while (src.size() > 0) {
E elt = src.remove(src.size() - 1);
dest.add(elt);

}
}

What happens if src and dest refer to the same object?
– this is aliasing
– it’s easy to forget!
– watch out for shared references in inputs

50CSE 331 Winter 2020

sqrt example

// throws: IllegalArgumentException if x<0
// returns: approximation to square root of x
public double sqrt(double x){…}

What are some values or ranges of x that might be worth probing?
x < 0 (exception thrown)
x ≥ 0 (returns normally)
around x = 0 (boundary condition)
perfect squares (sqrt(x) an integer), non-perfect squares
x<sqrt(x) and x>sqrt(x) – that's x<1 and x>1 (and x=1)
Specific tests: say x = -1, 0, 0.5, 1, 4 (probably want more)

51CSE 331 Winter 2020

How many tests is enough?

Common goal is high code coverage:
– ensure test suite covers (executes) all of the program
– assess quality of test suite with % coverage

• tools to measure this for you

Assumption implicit in goal:
– if high coverage, then most mistakes discovered
– far from perfect but widely used

52CSE 331 Winter 2020

Code coverage: statement coverage

int min(int a, int b) {
int r = a;
if (a <= b) {

r = a;
}
return r;

}

• Consider any test with a ≤ b (e.g., min(1,2))
– executes every instruction
– misses the bug

• Statement coverage is not enough

53CSE 331 Winter 2020

Code coverage: branch coverage

int quadrant(int x, int y) {
int ans;
if (x >= 0)
ans=1;

else
ans=2;

if (y < 0)
ans=4;

return ans;
}

• Consider two-test suite: (2,-2) and (-2,2). Misses the bug.
• Branch coverage (all tests “go both ways”) is not enough

– here, path coverage is enough (there are 4 paths)

54CSE 331 Winter 2020

2 1

3 4

Code coverage: path coverage

int countPositive(int[] a) {
int ans = 0;
for (int x : a) {
if (x > 0)
ans = 1; // should be ans += 1;

}
return ans;

}

• Consider two-test suite: [0,0] and [1]. Misses the bug.
• Or consider one-test suite: [0,1,0]. Misses the bug.

• Branch coverage is not enough
– here, path coverage is enough, but no bound on path-count!

55CSE 331 Winter 2020

Code coverage: what is enough?

int sumOfThree(int a, int b, int c) {
return a+b;

}

• Path coverage is not enough
– consider test suites where c is always 0

• Typically a “moot point” since path coverage is unattainable for
realistic programs
– but do not assume a tested path is correct
– even though it is more likely correct than an untested path

• Another example: buggy abs method from earlier in lecture

56CSE 331 Winter 2020

Varieties of coverage
Various coverage metrics (there are more):

Statement coverage
Branch coverage
Loop coverage
Condition/Decision coverage
Path coverage

Limitations of coverage:
1. 100% coverage is not always a reasonable target

– may be high cost to approach 100%
2. Coverage is just a heuristic

– we really want the revealing subdomains for the errors present

57

increasing
number of
test cases
required
(generally)

CSE 331 Winter 2020

Summary of Heuristics

• Split subdomains on boundaries appearing in the specification
• Split subdomains on boundaries appearing in the implementation
• Test boundaries that commonly lead to errors
• Test special cases like nulls, empty arrays, 0, etc.
• Tests to exercise every branch of the code

– all paths would be even nicer (but not always possible)
• Test any cases that caused bugs before (to avoid regression)

On the other hand, don't confuse volume with quality of tests
– look for revealing subdomains
– want tests in every revealing subdomain not just lots of tests

58CSE 331 Winter 2020

Testing Tools

• Modern development ecosystems have built-in support for testing

• Your homework introduces you to Junit
– standard framework for testing in Java

• Continuous integration
– ensure tests pass before code is submitted

• You will see more sophisticated tools in industry
– libraries for creating mock implementations of other modules
– automated tools to test on every platform
– automated tools to find severe bugs (using AI)
– …

CSE 331 Winter 2020 59

Testing Tips

• Write tests both before and after you write the code
– (only clear-box tests need to come afterward)

• Be systematic: think through revealing subdomains & test each one

• Test your tests
– try putting a bug in to make sure the test catches it

• Test code is different from regular code
– changeability is less important; correctness is more important
– do not write any test code that is not obviously correct

• otherwise, you need to test that code too!
• unlike in regular code, it’s okay to repeat yourself in tests

60CSE 331 Winter 2020

