CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020
ADT Implementation: Representation Invariants

Data abstraction outline

ADT specification ADT implementation

Abstraction Barrier

Abstract
States

Fields in our

Java class

Abstraction function (AF):
Relationship between ADT
specification and
implementation

UW CSE 331 Winter 2020

Last time: abstraction function

 Allows us to check correctness

— use reasoning to show that the method leaves the abstract state
such that it satisfies the postcondition

// AF (this) = wvals[0..len-1]
private int[] vals;

private int len;

// @requires length > 0
// @modifies this
// Qeffects this = this[0..length-2]

public wvoid pop() { ... }

CSE 331 Spring 2020

34

Last time: abstraction function

 Allows us to check correctness

— use reasoning to show that the method leaves the abstract state
such that it satisfies the postcondition

// AF (this) = wvals[0..len-1]

// Q@requires length > 0

// @modifies this

// @effects this = this[0..length-2]
public void pop () {

{{ length >0 }} > {{len>0}}
len = len - 1;
{{ this = this,[0 .. length,. — 2] }} {len=leny.-1}}
} T = {{ this = vals[0..len-1]

— VaIS[O..|enpre'2] 1

CSE 331 Spring 2020

Data abstraction outline

ADT specification ADT implementation

Abstraction Barrier
N
el P
Abstract :\\\\\\’ '
States

Fields in our
Java class

Abstraction function (AF):

Relationship between ADT Representation invariant (RI):
specification and Relationship among
implementation implementation fields

UW CSE 331 Winter 2020 36

Connecting implementations to specs

For implementers / debuggers / maintainers of the implementation:

Representation Invariant. maps Object — boolean
— defines the set of valid concrete values
— must hold at all times (outside of mutators)
— no object should ever violate the rep invariant
 such an object has no useful meaning

Abstraction Function: maps Object — abstract state

— says what the data structure means in vocabulary of the ADT
— only defined on objects meeting the rep invariant

CSE 331 Spring 2020 37

Example: Circle

/** Represents a mutable circle in the plane. For example,
* it can be a circle with center (0,0) and radius 1. */
public class Circle {

// Rep invariant: center != null and rad > ©
private Point center;
private double rad;

// Abstraction function:

// AF(this) = a circle with center at this.center
// and radius this.rad

//

CSE 331 Spring 2020 38

Example: Circle 2

/** Represents a mutable circle in the plane. For example,
* it can be a circle with center (0,0) and radius 1. */
public class Circle {

// Rep invariant: center != null and edge != null
// and !center.equals(edge)
private Point center, edge;

// Abstraction function:

// AF(this) = a circle with center at this.center
// and radius this.center.distanceTo(this.edge)

//

CSE 331 Spring 2020 39

Example: CharSet ADT

// Overview: A CharSet is a finite mutable set of Characters

// Reffects: creates a fresh, empty CharSet
public CharSet () {..}

// @modifies: this
// Qeffects: this changed to this + {c}

public void insert (Character c) {..}

// @modifies: this
// Qeffects: this changed to this - {c}
public void delete (Character c) {..}

// Q@Qreturn: true iff c is in this set

public boolean member (Character c) {..}

// Qreturn: cardinality of this set
public int size() {..}

CSE 331 Spring 2020 40

An implementation: Is it right?

class CharSet {

}

private List<Character> elts =
new ArraylList<Character> () ;

public void insert (Character c) {
elts.add(c) ;

}

public void delete (Character c) {
elts.remove (c) ;

}

public boolean member (Character c) {
return elts.contains(c);

}

public int size() {
return elts.size ()
}

CSE 331 Spring 2020 41

CharSet s = new CharSet() ;
Character a = new Character('a');

An iImplementa s-irsertial;

s.insert(a) ;
s.delete(a) ;

class CharSet {

private List<Chara« s (Botmnlame () _ . i
new ArrayList<C System.out.print ("wrong") ;

else

public wvoid insert‘._____S_i_f_s*i'—ffi1 O.Ift .print ("right") ;

elts.add(c) ;

}

public void delete (Character c) {
elts.remove (c) ;

}

public boolean member (Character c) {
return elts.contains(c);

}

public int size () {

} return elts.size(); Where is the error?
}

CSE 331 Spring 2020 42

Where Is the Error?

 Perhaps insert is wrong
— should not insert a character that is already there?

* Perhaps delete (and size) is wrong
— should remove all occurrences?

* In this case, the representation invariant tells us which is correct
— Rl says if character can appear multiple times or not
— this is how we document our choice for “the right answer”
« again, good invariant makes the code write itself...

CSE 331 Spring 2020 43

The representation invariant

Write it like this:

class CharSet {
// Rep invariant:
// elts has no nulls and no duplicates
private List<Character> elts = ..

Or, more formally (if you prefer):
for all indices i of elts, we have elts.elementAt(i) # null
for all indices i, j of elts with i 1=,
we have ! elts.elementAt(i).equals(elts.elementAt(j))

CSE 331 Spring 2020 44

The representation invariant

Write it like this:

class CharSet {
// Rep invariant:
// elts has no nulls and no duplicates
private List<Character> elts = ..

« Must hold before and after every CharSet operation

» Methods may assume it implicitly (along with @requires)
— no need to state your assumption that Rl holds

CSE 331 Spring 2020

45

Now we can locate the error

// Rep invariant:
// elts has no nulls and no duplicates

public void insert (Character c) {
elts.add(c) ;

public void delete (Character c) {
elts.remove (c) ;

CSE 331 Spring 2020

46

Example: Polynomial

/** An immutable polynomial with integer coefficients.
* Examples include 0, 2x, and x + 3x"2 + 5x. */
public class IntPoly {

// Rep invariant: coeffs != null and
// coeffs[coeffs.length-1] !I= 0
private final int[] coeffs;

// Abstraction function:
// AF(this) = sum of this.coeffs[i] * x"i
// for i =0 .. this.coeffs.length

/** Returns the highest exponent with nonzero coefficient
* or zero if none exists. */
public int degree() { ... }

// ... CSE 331 Spring 2020 47

Example: Polynomial 2

/** An immutable polynomial with integer coefficients.
* Examples include 0, 2x, and x + 3x”2 + 5x. */
public class IntPoly {

// Rep invariant: terms != null and
// terms is sorted by degree and
// no two terms have the same degree

private final List<IntTerm> terms;

// Abstraction function:
// AF(this) = sum of monomials in this.terms

/** Returns the highest exponent with nonzero coefficient
* or zero if none exists. */
public int degree() { ... }

/] ... CSE 331 Spring 2020 48

Checking rep invariants

Should you write code to check that the rep invariant holds?
— Yes, if it's inexpensive [depends on the invariant]
— Yes, for debugging [even when it's expensive]

— Often hard to justify turning the checking off
« better argument is removing clutter (improve understandability)

— Some private methods need not check (Why?)

A great debugging technique:

Design your code to catch bugs by implementing and using a
function to check the rep-invariant

CSE 331 Spring 2020 49

Checking the rep invariant

Rule of thumb: check on entry and on exit (why?)

public void delete (Character c) {
checkRep () ;
elts.remove (c) ;

// Is this guaranteed to get called?
// (could guarantee it with a finally block)
checkRep() ;

}

/** Verify that elts contains no duplicates. */
private void checkRep() {
for (int i = 0; i < elts.size(); i++) {
assert elts.indexOf (elts.elementAt(i)) == 1i;

}

} CSE 331 Spring 2020

50

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts() ;

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
private List<Character> elts;
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the rep invariant?
Can’t say!

CSE 331 Spring 2020 51

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet() ;

Character a = new Character(’a’);
s.insert(a);

s.getElts () .add(a) ;

s.delete(a);

i1f (s.member(a)) ..

* Representation exposure is external access to the rep

* Representation exposure is almost always hat
— can cause bugs that will be very hard to detect

CSE 331 Spring 2020 52

Avoiding rep exposure (way #1)

« One way to avoid rep exposure is to make copies of all data that
cross the abstraction barrier

— Copy in [parameters that become part of the implementation]
— Copy out [results that are part of the implementation]

« Examples of copying (assume Point is a mutable ADT):
class Line {
private Point s, e;
public Line (Point s, Point e) {
this.s = new Point(s.x,s.y);
this.e = new Point(e.x,e.y);
}
public Point getStart() {
return new Point(this.s.x,this.s.y)

}

CSE 331 Spring 2020 53

Need deep copying

« “Shallow” copying is not enough
— prevent any aliasing to mutable data inside/outside abstraction

« What's the bug (assuming Point is a mutable ADT)?
class PointSet {
private List<Point> points = ..
public List<Point> getElts () {
return new ArraylList<Point> (points) ;

}

« Not in example: Also need deep copying on “copy in”

CSE 331 Spring 2020 54

Avoiding rep exposure (way #2)

« One way to avoid rep exposure is to exploit the immutability of
(other) ADTs the implementation uses

— aliasing is no problem if nobody can change data
* have to mutate the rep to break the rep invariant

« Examples (assuming Point is an immutable ADT):
class Line {
private Point s, e;
public Line (Point s, Point e) {
this.s S;
this.e e;

}
public Point getStart() ({

return this.s;

}

CSE 331 Spring 2020

55

Why [not] immutability?

« Several advantages of immutability
— aliasing does not matter
— no need to make copies with identical contents

— rep invariants cannot be broken via exposure
— see CSE341 for more!

« Does require different code (e.g., if Point immutable)
void raiselLine (double deltaY) {
this.s = new Point(s.x, s.yt+deltaY);
this.e = new Point(e.x, e.yt+deltaY);

}

 |Immutable classes in Java libraries include String,
Character, Integer, ...

CSE 331 Spring 2020 56

Deepness, redux

 An immutable ADT must be immutable “all the way down”
— No references reachable to data that may be mutated

« S0 combining our two ways to avoid rep exposure:
— Must copy-in, copy-out “all the way down” to immutable parts

CSE 331 Spring 2020 57

Back to getElts

Recall our initial rep-exposure example:

class CharSet {
// Rep invariant: elts has no nulls and no dups

private List<Character> elts = ..;

// returns: elts currently in the set

public List<Character> getElts () {
return new ArrayList<Character>(elts); //copy out!

CSE 331 Spring 2020 58

Alternative #3

// returns: elts currently in the set
public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts) ;//copy out!

}

public List<Character> getElts() { // version 2
return Collections.unmodifiablelList (elts);

}

From the JavaDoc for Collections.unmodifiablelist:

Returns an unmodifiable view of the specified list. This method allows
modules to provide users with "read-only" access to internal lists. Query
operations on the returned list "read through"” to the specified list, and
attempts to modify the returned list... result in an
UnsupportedOperationException.

CSE 331 Spring 2020 59

Suggestions

Best options for implementing getElts ()

if O(n) time is acceptable for relevant use cases, copy the list

— safest option
— best option for changeability

if O(1) time is required, then return an unmodifiable list
— prevents breaking rep invariant
— clearly document that behavior is unspecified after mutation

— ideally, write a your own unmodifiable view of the list
that throws an exception on all operations after mutation

if O(1) time is required and there is no unmodifiable version and
you don’t have time to write one, expose rep and feel guilty

CSE 331 Spring 2020

60

