
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Abstract Data Types (ADTs)

Procedural and data abstractions

Procedural abstraction:
– abstract from implementation details of procedures (methods)
– specification is the abstraction
– satisfy the specification with an implementation

Data abstraction:
– abstract from details of data representation
– also a specification mechanism
– way of thinking about programs and design

Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s
– one of the fundamental ideas of computer science

33CSE 331 Spring 2020

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

ADTs give us the freedom to change data structures later on
– data structure details are hidden from the clients

Pro tip: often best to start by designing data
– first, what operations will be permitted on the data (for clients)
– next, decide how data be organized (data structures)
– lastly, write the code

34CSE 331 Spring 2020

Specifying an ADT

Mutable

1. overview
2. abstract state
3. creators
4. observers
5. producers (rare)
6. mutators

Immutable

1. overview
2. abstract state
3. creators
4. observers
5. producers
6. mutators

• Should have no information about the implementation
– (latter called the “concrete representation”)
– leave ourselves free to change it later

• A collection of procedural abstractions — not procedures
CSE 331 Spring 2020 35

Concept of 2D point, as an ADT
class Point {
// A 2D point exists in the plane, ...
public float x();
public float y();
public float r();
public float theta();

// ... can be created, ...
public Point(); // new point at (0,0)
public Point centroid(Set<Point> points);

// ... can be moved, ...
public void translate(float delta_x,

float delta_y);
public void scaleAndRotate(float delta_r,

float delta_theta);
}

36

Observers / Getters

Creators /
Producers

Mutators

CSE 331 Spring 2020

Poly, an immutable datatype: overview
/**
* A Poly is an immutable polynomial with
* integer coefficients. A typical Poly is
* c0 + c1x + c2x2 + ...
*/
class Poly {

Overview: describes what the object means / represents
– state if immutable (default not)
– define abstract states for use in operation specifications

• difficult and vital!
• appeal to math if appropriate

– give an example (reuse it in operation definitions)

37CSE 331 Spring 2020

Poly: creators

// effects: makes a new Poly = 0
public Poly()

// effects: makes a new Poly = cxn

// throws: NegExponent if n < 0
public Poly(int c, int n)

Creators: creates a new object
– no pre-state: only effects, no modifies
– overloading: distinguish procedures of same name by parameters

• use with care (see Effective Java)
• will see alternative design patterns later on

38CSE 331 Spring 2020

Poly: observers

// returns: the degree of this polynomial,
// i.e., the largest exponent with a
// non-zero coefficient.
// Returns 0 if this = 0.
public int degree()

// returns: the coefficient of the term
// of this polynomial whose exponent is d
// throws: NegExponent if d < 0
public int coeff(int d)

Observers: retrieves information about the abstract state
– never modify the abstract state

39CSE 331 Spring 2020

“this” means the
abstract state

Poly: producers

// returns: this + q
public Poly add(Poly q)

// returns: this * q
public Poly mul(Poly q)

// returns: -this
public Poly negate()

Producers: creates other objects of the same type
– never modify the abstract value of existing objects

40CSE 331 Spring 2020

Another Example

Example: Text File

Use case is writing an editor for an IDE:

42CSE 331 Spring 2020

Example: Text File

Overview: telling users how to think about what this is

Option 1: list of characters & colors
Option 2: list of lines, each of which is a...

list of characters & colors

Both will probably require a method to take (line, col) to character

Key difference:
– Option 1 suggests you can remove, e.g., chars 100–200, which

may span multiple lines
– That is not natural in Option 2

(Option 1 makes more sense for Microsoft Word.)

43CSE 331 Spring 2020

Example: Text File

Will use a list of lines.
What is each line?

Option 1: pair (list of characters, list of colors)
Option 2: list of pairs (character, color)
Option 3: list of pairs (list of characters, color)

Option 1 must make clear that the lists are same length

Key differences:
– Option 1 & 2 should let you insert (char, color) at given column
– Option 3 should let change the color of a keyword, which is a

single (chars, color), in one operation

44CSE 331 Spring 2020

Example: Text File

// Overview: Represents a text file, which is a list of
// lines of text. Each line of text is a list of
// (character, color) pairs.
//
// Example: [[(“a”, black), (“b”, red)], [(“c”, green)]]
// is the text:
// ab
// c
// (on two lines), where a is black, b is red, & c is green
public class TextFile {

// ...

}

45CSE 331 Spring 2020

Building Blocks of Abstract States

Some useful “math” concepts for describing states abstractly
• numbers
• characters
• lists
• tuples (fixed length)
• objects

– parts are named, not numbered (as in tuples)
– e.g. {chars: “protected”, color: 3}

46CSE 331 Spring 2020

