
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Lecture 5 – Specifications

Reminders

• HW2 (pt 2) due Monday

• HW3 due Wednesday
– your git repository should exist now (check your email)
– should be quick unless there are issues with the tools

• make sure you leave time for that possibility
– documentation about the tools on the web site

• plan to spend some time reading...

CSE 331 Spring 2020 29

CSE 331 Spring 2020 30

Recap + Q & A + Exercises

Specifications

To prove correctness of our method, need
• precondition
• postcondition

Without these, we can’t say whether the code is correct
These tell us what it means to be correct

They are the specification for the method

CSE 331 Spring 2020 32

Correctness =
Validity of

{{ P }} S {{ Q }}

Importance of Specifications

Specifications are essential for
• correctness: part of our Hoare triple
• changeability: make clear what will/won’t change
• understandability: clients only read spec, not code
• modularity: can work independently once spec is fixed

Formalizing specifications also rewards designs that are
• easy to describe clearly
• easy to describe concisely

33CSE 331 Spring 2020

Warnings on Specifications

Specifications are also the products of human design, so...

• They will contain bugs
– (recall the central dogma of this course)
– harder to fix the more people that have seen it

• “turns to stone” a bit more with each viewer

• Creating them requires judgement
– no “turn the crank” way to produce good specs (or invariants)
– harder but good for job security

34CSE 331 Spring 2020

Writing specifications with Javadoc

• Javadoc
– Sometimes can be daunting; get used to using it
– Very important feature of Java (copied by others)

• Javadoc convention for writing specifications
– Method signature
– Text description of method
– @param: description of what gets passed in
– @return: description of what gets returned
– @throws: exceptions that may occur

35CSE 331 Spring 2020

CSE 331 specifications

• The precondition: constraints that hold before the method is called
(if not, all bets are off)
– @requires: spells out any obligations on client

• The postcondition: constraints that hold after the method is called
(if the precondition held)
– @modifies: lists objects that may be affected by method; any

object not listed is guaranteed to be untouched
– @throws: lists possible exceptions and conditions under

which they are thrown (Javadoc uses this too)
– @effects: gives guarantees on final state of modified objects
– @return: describes return value (Javadoc uses this too)

36CSE 331 Spring 2020

Note: these are abbreviated.
In your code, it must be
@spec.requires,
@spec.modifies, etc.

Example 1

static <T> int changeFirst(List<T> lst, T oldelt, T newelt)
requires lst, oldelt, and newelt are non-null
modifies lst
effects change the first occurrence of oldelt in lst to newelt

(& makes no other changes to lst)
returns the position of the element in lst that was oldelt and

is now newelt or -1 if not in oldelt

static <T> int changeFirst(
List<T> lst, T oldelt, T newelt) {

int i = 0;
for (T curr : lst) {

if (curr == oldelt) {
lst.set(newelt, i);
return i;

}
i = i + 1;

}
return -1;

}
37CSE 331 Spring 2020

Example 2

static List<Integer> zipSum(List<Integer> lst1, List<Integer> lst2)
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.
modifies none
effects none
returns a list of same size where the ith element is

the sum of the ith elements of lst1 and lst2

static List<Integer> zipSum(
List<Integer> lst1, List<Integer> lst2) {

List<Integer> res = new ArrayList<Integer>();
for(int i = 0; i < lst1.size(); i++) {

res.add(lst1.get(i) + lst2.get(i));
}
return res;

} 38CSE 331 Spring 2020

Example 3

static void listAdd(List<Integer> lst1, List<Integer> lst2)
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.

modifies lst1
effects ith element of lst2 is added to the ith element of lst1

returns none

static void listAdd(
List<Integer> lst1, List<Integer> lst2) {

for(int i = 0; i < lst1.size(); i++) {
lst1.set(i, lst1.get(i) + lst2.get(i));

}
} 39CSE 331 Spring 2020

Should requires clause be checked?

• Preconditions are common in ordinary classes
– in public libraries, necessary to deal with all possible inputs

• If the client calls a method without meeting the precondition, the
code is free to do anything
– including pass corrupted data back
– it is a good idea to fail fast: to provide an immediate error,

rather than permitting mysterious bad behavior

• Rule of thumb: Check if cheap to do so
– Example: list has to be non-null à check
– Example: list has to be sorted à skip
– Be judicious if private / only called from your code

40CSE 331 Spring 2020

Stronger vs Weaker Specifications

• Definition 1: specification S2 is stronger than S1 iff
– for any implementation M: M satisfies S2 => M satisfies S1

– i.e., S2 is harder to satisfy

• An implementation satisfying a stronger specification can be
used anywhere that a weaker specification is required
- can substitute a procedure satisfying a stronger spec

41CSE 331 Spring 2020

S2 S1
(satisfying implementations)

Stronger vs Weaker Specifications

• Definition 2: specification S2 is stronger than S1 iff
– postcondition of S2 is stronger than that of S1

(on all inputs allowed by both)
– precondition of S2 is weaker than that of S1

• A stronger specification:
– is harder to satisfy
– gives more guarantees to the caller

• A weaker specification:
– is easier to satisfy
– gives more freedom to the implementer

42CSE 331 Spring 2020

Example 1 (stronger postcondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)
return i;

}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

43CSE 331 Spring 2020

Which is stronger?

Example 2 (weaker precondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)

return i;
}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

44CSE 331 Spring 2020

Which is stronger?

Example 3
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)

return i;
}
return -1;

}

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

45CSE 331 Spring 2020

Which is stronger?

“Strange” case: @throws

Compare:
S1:

@throws FooException if x<0
@return x+3

S2:
@return x+3

S3:
@requires x >= 0
@return x+3

• S1 & S2 are stronger than S3
• S1 & S2 are incomparable because they promise different,

incomparable things when x<0
CSE 331 Spring 2020 46

Strengthening a specification

• Strengthen a specification by:
– Promising more (stronger postcondition):

• returns clause harder to satisfy
• effects clause harder to satisfy
• fewer objects in modifies clause
• more specific exceptions (subclasses)

– Asking less of client (weaker precondition)
• requires clause easier to satisfy

• Weaken a specification by:
– (Opposite of everything above)

47CSE 331 Spring 2020

More Q & A

