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Reminders

• HW2 (pt 2) due Monday

• HW3 due Wednesday
– your git repository should exist now (check your email) 
– should be quick unless there are issues with the tools

• make sure you leave time for that possibility
– documentation about the tools on the web site

• plan to spend some time reading...
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Recap + Q & A + Exercises



Specifications

To prove correctness of our method, need
• precondition
• postcondition

Without these, we can’t say whether the code is correct
These tell us what it means to be correct

They are the specification for the method
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Correctness = 
Validity of

{{ P }} S {{ Q }}



Importance of Specifications

Specifications are essential for
• correctness: part of our Hoare triple
• changeability: make clear what will/won’t change
• understandability: clients only read spec, not code
• modularity: can work independently once spec is fixed

Formalizing specifications also rewards designs that are
• easy to describe clearly
• easy to describe concisely
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Warnings on Specifications

Specifications are also the products of human design, so...

• They will contain bugs
– (recall the central dogma of this course)
– harder to fix the more people that have seen it

• “turns to stone” a bit more with each viewer

• Creating them requires judgement
– no “turn the crank” way to produce good specs (or invariants)
– harder but good for job security
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Writing specifications with Javadoc

• Javadoc
– Sometimes can be daunting; get used to using it
– Very important feature of Java (copied by others)

• Javadoc convention for writing specifications
– Method signature
– Text description of method
– @param:  description of what gets passed in
– @return:  description of what gets returned
– @throws:  exceptions that may occur
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CSE 331 specifications

• The precondition: constraints that hold before the method is called 
(if not, all bets are off)
– @requires:  spells out any obligations on client

• The postcondition: constraints that hold after the method is called 
(if the precondition held)
– @modifies:  lists objects that may be affected by method; any 

object not listed is guaranteed to be untouched
– @throws:  lists possible exceptions and conditions under 

which they are thrown (Javadoc uses this too)
– @effects:  gives guarantees on final state of modified objects
– @return:  describes return value (Javadoc uses this too)
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Note: these are abbreviated. 
In your code, it must be 
@spec.requires, 
@spec.modifies, etc.



Example 1

static <T> int changeFirst(List<T> lst, T oldelt, T newelt)
requires lst, oldelt, and newelt are non-null
modifies lst
effects change the first occurrence of oldelt in lst to newelt

(& makes no other changes to lst)
returns the position of the element in lst that was oldelt and

is now newelt or -1 if not in oldelt

static <T> int changeFirst(
List<T> lst, T oldelt, T newelt) {

int i = 0;
for (T curr : lst) {

if (curr == oldelt) {
lst.set(newelt, i);
return i;

}
i = i + 1;

}
return -1;

}
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Example 2

static List<Integer> zipSum(List<Integer> lst1, List<Integer> lst2) 
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.
modifies none
effects none
returns a list of same size where the ith element is 

the sum of the ith elements of lst1 and lst2

static List<Integer> zipSum(
List<Integer> lst1, List<Integer> lst2) {

List<Integer> res = new ArrayList<Integer>();
for(int i = 0; i < lst1.size(); i++) {

res.add(lst1.get(i) + lst2.get(i));
}
return res;
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Example 3

static void listAdd(List<Integer> lst1, List<Integer> lst2) 
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size. 

modifies lst1
effects ith element of lst2 is added to the ith element of lst1 

returns none

static void listAdd(
List<Integer> lst1, List<Integer> lst2) {

for(int i = 0; i < lst1.size(); i++) {
lst1.set(i, lst1.get(i) + lst2.get(i));

}
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Should requires clause be checked?

• Preconditions are common in ordinary classes
– in public libraries, necessary to deal with all possible inputs

• If the client calls a method without meeting the precondition, the 
code is free to do anything
– including pass corrupted data back
– it is a good idea to fail fast: to provide an immediate error, 

rather than permitting mysterious bad behavior

• Rule of thumb: Check if cheap to do so
– Example: list has to be non-null à check
– Example: list has to be sorted à skip
– Be judicious if private / only called from your code

40CSE 331 Spring 2020



Stronger vs Weaker Specifications

• Definition 1: specification S2 is stronger than S1 iff
– for any implementation M: M satisfies S2 => M satisfies S1

– i.e., S2 is harder to satisfy

• An implementation satisfying a stronger specification can be 
used anywhere that a weaker specification is required
- can substitute a procedure satisfying a stronger spec
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S2 S1
(satisfying implementations)



Stronger vs Weaker Specifications

• Definition 2: specification S2 is stronger than S1 iff
– postcondition of S2 is stronger than that of S1

(on all inputs allowed by both)
– precondition of S2 is weaker than that of S1

• A stronger specification:
– is harder to satisfy
– gives more guarantees to the caller

• A weaker specification:
– is easier to satisfy
– gives more freedom to the implementer
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Example 1 (stronger postcondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value) 
return i;

}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value
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Which is stronger?



Example 2 (weaker precondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value) 

return i;
}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a
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Which is stronger?



Example 3
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value) 

return i;
}
return -1;

}

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a
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Which is stronger?



“Strange” case: @throws

Compare:
S1: 

@throws FooException if x<0
@return x+3

S2:
@return x+3

S3:
@requires x >= 0
@return x+3

• S1 & S2 are stronger than S3
• S1 & S2 are incomparable because they promise different, 

incomparable things when x<0
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Strengthening a specification

• Strengthen a specification by:
– Promising more (stronger postcondition):

• returns clause harder to satisfy
• effects clause harder to satisfy
• fewer objects in modifies clause
• more specific exceptions (subclasses)

– Asking less of client (weaker precondition)
• requires clause easier to satisfy

• Weaken a specification by:
– (Opposite of everything above)
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More Q & A


