
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Lecture 4 – Writing Loops

Administrivia

• HW2 is split into two parts...

• HW2 (part 1) on loops, out now, due Wednesday
– correctness of a loop
– given invariant, fill in (simple) code

• HW2 (part 2) on loops, due next Monday

• Thursday section on preparing for HW3
– should be quick if you attend section

CSE 331 Spring 2020 39

Recap + Q&A

Previously on CSE 331...

{{ P }} while (cond) S {{ Q }}

This triple is valid iff

CSE 331 Spring 2020 41

{{ P }}
{{ Inv: I }}
while (cond)
S

{{ Q }}

• I holds initially
• I holds each time we execute S
• Q holds when I holds and cond is false

QIP

• Loop invariant comes out of the algorithm idea
– describes partial progress toward the goal
– how you will get from start to end

• Essence of the algorithm idea is:
– invariant
– how you make progress on each step (e.g., i = i + 1)

• Code is ideally just details that follow from that idea...

Loop Invariants

CSE 331 Spring 2020 42

Loop Invariant ➜ Code

In fact, can usually deduce the code from the invariant:

• When does loop invariant satisfy the postcondition?
– gives you the termination condition

• What is the easiest way to satisfy the loop invariant?
– gives you the initialization code

• How does the invariant change as you make progress?
– gives you the rest of the loop body

CSE 331 Spring 2020 43

QIP1P

Example: max of array

CSE 331 Spring 2020 44

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (?) {

??
i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

Algorithm idea

Example: max of array

CSE 331 Spring 2020 45

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}

??

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??
i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

When does Inv imply postcondition?
Happens when i = n

Example: max of array

CSE 331 Spring 2020 46

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;
int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??

}
{{ m = max(b[0], ..., b[n-1]) }}

Easiest way to make this hold?
Take i = 1 and m = max(b[0])

Example: max of array

CSE 331 Spring 2020 47

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;
int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {

??
i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

{{ m = max(b[0], …, b[i-1]) }}

{{ m = max(b[0], …, b[i-1]) }}
{{ m = max(b[0], …, b[i]) }}

How do we fill this in?
Set m = max(m, b[i]).

Example: max of array

CSE 331 Spring 2020 48

Write code to compute max(b[0], …, b[n-1]):

{{ b.length >= n and n > 0 }}
int i = 1;
int m = b[0];

{{ Inv: m = max(b[0], ..., b[i-1]) }}
while (i != n) {
if (b[i] > m)

m = b[i];
i = i + 1;

}
{{ m = max(b[0], ..., b[n-1]) }}

• Benefits of improving at reasoning about code:
1. find bugs
2. thinking at the level of invariants

• To try out an invariant, think through:
– can we easily check if the postcondition is satisfied?
– can we easily get into a state that satisfies it?
– can we efficiently make progress toward termination?

Loop Invariant ➜ Code

CSE 331 Spring 2020 49

Example: Dutch National Flag

Given an array of red, white, and blue pebbles, sort the array so the
red pebbles are at the front, the white pebbles are in the middle,
and the blue pebbles are at the end

CSE 331 Spring 2020 50

Edsgar Dijkstra

Dutch National Flag Code

Invariant:

0 i j k n

CSE 331 Spring 2020 51

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Termination condition:
• j = k

CSE 331 Spring 2020 52

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Termination condition:
• j = k

Initialization:
• i = 0, j = i, and k = n

CSE 331 Spring 2020 53

Red White BlueMixed

Dutch National Flag Code

Three cases depending on the value of A[j]:

white

0 i j k n

red

0 i j k n

blue

0 i j k n
CSE 331 Spring 2020 54

Red White BlueMixed

Red White BlueMixed

Red White BlueMixed

Dutch National Flag Code
int i = 0, j = 0;
int k = n;

{{ Inv: 0 <= i <= j <= k <= n and A[0], …, A[i-1] are red and ... }}
while (j != k) {
if (A[j] is white) {

j = j+1;
} else if (A[j] is blue) {

swap A[j], A[k-1];
k = k - 1;

} else { // A[j] is red
swap A[i], A[j];
i = i + 1;
j = j + 1;

}
}

CSE 331 Spring 2020 55

• Both of these invariants are weakened version of postcondition
– describes partial vs complete solution
– that is typical (esp. in this class)

• See CSE 421 for more on how to come up with invariants

Loop Invariants

CSE 331 Spring 2020 56

Q & A

Another Example

Example: quotient and remainder

Problem: Set q to be the quotient of x/y and r to be the remainder

Precondition: x >= 0 and y > 0
Postcondition: q*y + r = x and 0 <= r < y

– i.e., y doesn’t go into x any more times

CSE 331 Spring 2020 59

Example: quotient and remainder

Problem: Set q to be the quotient of x/y and r to be the remainder

Precondition: x >= 0 and y > 0
Postcondition: q*y + r = x and 0 <= r < y

– i.e., y doesn’t go into x any more times

Loop invariant: q*y + r = x and 0 <= r
– postcondition is special case when we also have r < y
– this suggests a loop condition…

CSE 331 Spring 2020 60

Example: quotient and remainder

We want “r < y” when the conditions fails
– so the condition is r >= y
– can see immediately that the postcondition holds on loop exit

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 61

Example: quotient and remainder

Need to make the invariant hold initially…
– search for an easy way to satisfy q*y + r = x and 0 <= r

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 62

Example: quotient and remainder

Need to make the invariant hold initially…
– search for an easy way to satisfy q*y + r = x and 0 <= r
– how about q = 0?

- then we need r = x... and that is okay since 0 <= x

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 63

Example: quotient and remainder

Need to make the invariant hold initially…
– search for the simplest way that works

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 64

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

r = r – y;
}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 65

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

r = r – y;
}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 66

{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

{{ q*y + r = x and 0 <= r and y <= r }}

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

r = r – y;
}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 67

{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

{{ q*y + r = x and 0 <= r and y <= r }}
{{ q*y+y + r-y = x and 0 <= r and y <= r }}

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

r = r – y;
}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 68

{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

{{ q*y + r = x and 0 <= r and y <= r }}
{{ q*y+y + r-y = x and 0 <= r and y <= r }}

{{ (q+1)*y + r-y = x and 0 <= r and y <= r }}

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
q = q + 1;
r = r – y;

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 69

{{ (q+1)*y + r-y = x and y <= r }}
{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

(+y and -y cancel)

Aside on Efficiency

• This is not an efficient agorithm
– runs in O(x/y) time, which could be huge (e.g. x/y = 263)
– but it is correct

• Grade school “long division“ is much more efficient
– runs in O((log x)2) time
– makes progress in larger steps

• (needs a more complex invariant)

CSE 331 Spring 2020 70

