
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Lecture 4½ – An Interview Question

Sorted Matrix Search

Problem Description

Given a matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

CSE 331 Spring 2020 2

Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)

CSE 331 Spring 2020 3

Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)

(One) Idea: Trace the contour between the numbers ≤ x and > x
in each row to see if x appears.

CSE 331 Spring 2020 4

< x >= x

Sorted Matrix Search Code

Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]
• for each i, holds for exactly one j
• holds when we are in the right spot in row i

CSE 331 Spring 2020 5

i

j

Sorted Matrix Search Code

Initialization:

Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]

How do we get the invariant to hold with i = 0?
• no easy way to initialize it so the invariant holds
• we need to search...

CSE 331 Spring 2020 6

i

j

Sorted Matrix Search Code

Initialization:

New goal: M[0,0], ..., M[0,j-1] < x ≤ M[0,j], ..., M[0,n-1]
• will need a loop to find j
• Loop invariant: x ≤ M[0,j], ..., M[0,n-1]

– weakening of the new goal
– decrease j until we get M[0,j-1] to also hold

CSE 331 Spring 2020 7

i

j

Sorted Matrix Search Code

Initialization:

int i = 0;

int j = ?

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2020 8

i

j

What is the easiest way to
make this hold initially?

Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2020 9

i

j

Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2020 10

i

j

When does the postcondition hold?
(Careful!)

Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2020 11

i

j

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {
??
j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Spring 2020 12

i

j

What goes here?

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {
??
j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Spring 2020 13

i

j

{{ x ≤ M[i,j], ..., M[i,n-1] }}
{{ x ≤ M[i,j-1], ..., M[i,n-1] }}

{{ x ≤ M[i,j], ..., M[i,n-1] and x ≤ M[i,j-1] }}

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {

j = j – 1;
}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Spring 2020 14

i

j

What goes here?
Nothing!

Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])
j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2020 15

i

j

Sorted Matrix Search Code

That finds the right column in row 0
• can now check M[0,j] = x (if j < n)
• if not, we can move onto the next row

– x cannot be anywhere in the row if it‘s not at M[i,j]
– set i = i + 1

Process continues in each row thereafter...
CSE 331 Spring 2020 16

i

j

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x ≤ M[i,j] ≤ M[i+1,j] since columns are sorted
– and M[i+1,j] ≤ M[i +1,j+1], .., M[i +1,n-1] since rows are sorted
– so we get x ≤ M[i +1,j], .., M[i +1,n-1]

CSE 331 Spring 2020 17

i

j

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x <= M[i +1,j], .., M[i +1,n-1]
– may need to restore invariant for M[i,0], ..., M[i,j-1] < x
– decrease j until it holds again...

• when have we seen this before?
• initialization

CSE 331 Spring 2020 18

i

j

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x <= M[i +1,j], .., M[i +1,n-1]
– may need to restore invariant for M[i,0], ..., M[i,j-1] < x
– could copy and paste the same loop

• or you can do it with one copy

CSE 331 Spring 2020 19

i

j

Don’t try this at home!

Sorted Matrix Search Code

int i = 0, j = n;

[move j left]

{{ Inv: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
while (i != n) {

i = i + 1;

[move j left]

}

CSE 331 Spring 2020 20

int i = 0, j = n;

while (i != n) {

[move j left]

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
i = i + 1;

}

instead of

we can write

Sorted Matrix Search Code

int i = 0;

int j = n;

while (i != n) {

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])

j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i,j])

return true;

i = i + 1;

}

return false;

CSE 331 Spring 2020 21

i

j

Sorted Matrix Search Code

int i = 0;

int j = n;

{{ Inv: x not in M[k,l] for k < i and x ≤ M[i,j], ..., M[i,n-1] }}
while (i != n) {

{{ Inv: x not in M[k,l] for k < i and x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])

j = j – 1;

{{ x not in M[k,l] for k < i and M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i,j])

return true;

i = i + 1;

}

return false;

CSE 331 Spring 2020 22

i

j

