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Lecture 4½ – An Interview Question



Sorted Matrix Search

Problem Description

Given a matrix M (of size m x n), where every row and every 
column is sorted, find out whether a given number x is in the matrix.
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Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every 
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)
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Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every 
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)

(One) Idea: Trace the contour between the numbers ≤ x and > x
in each row to see if x appears.
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Sorted Matrix Search Code

Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]
• for each i, holds for exactly one j
• holds when we are in the right spot in row i
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Sorted Matrix Search Code

Initialization:

Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]

How do we get the invariant to hold with i = 0?
• no easy way to initialize it so the invariant holds
• we need to search...
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Sorted Matrix Search Code

Initialization:

New goal: M[0,0], ..., M[0,j-1] < x ≤ M[0,j], ..., M[0,n-1]
• will need a loop to find j
• Loop invariant: x ≤ M[0,j], ..., M[0,n-1]

– weakening of the new goal
– decrease j until we get M[0,j-1] to also hold
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Sorted Matrix Search Code

Initialization:

int i = 0;

int j = ?

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while ( ?? )
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
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What is the easiest way to 
make this hold initially?



Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while ( ?? )
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
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Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while ( ?? )
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
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When does the postcondition hold?
(Careful!)



Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
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Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {
??
j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
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Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {
??
j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
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{{ x ≤ M[i,j], ..., M[i,n-1] }}
{{ x ≤ M[i,j-1], ..., M[i,n-1] }}

{{ x ≤ M[i,j], ..., M[i,n-1] and x ≤ M[i,j-1]  }}



Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {

j = j – 1;
}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
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What goes here? 
Nothing!



Sorted Matrix Search Code

Initialization:

int i = 0;

int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])
j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2020 15

i

j



Sorted Matrix Search Code

That finds the right column in row 0
• can now check M[0,j] = x (if j < n)
• if not, we can move onto the next row

– x cannot be anywhere in the row if it‘s not at M[i,j]
– set i = i + 1

Process continues in each row thereafter...
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Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x ≤ M[i,j] ≤ M[i+1,j] since columns are sorted
– and M[i+1,j] ≤ M[i +1,j+1], .., M[i +1,n-1] since rows are sorted
– so we get x ≤ M[i +1,j], .., M[i +1,n-1]
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Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x <= M[i +1,j], .., M[i +1,n-1]
– may need to restore invariant for M[i,0], ..., M[i,j-1] < x
– decrease j until it holds again...

• when have we seen this before?
• initialization
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Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x <= M[i +1,j], .., M[i +1,n-1]
– may need to restore invariant for M[i,0], ..., M[i,j-1] < x
– could copy and paste the same loop

• or you can do it with one copy
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Don’t try this at home!



Sorted Matrix Search Code

int i = 0, j = n;

[move j left]

{{ Inv: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
while (i != n) {

i = i + 1;

[move j left]

}
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int i = 0, j = n;

while (i != n) {

[move j left]

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
i = i + 1;

}

instead of

we can write



Sorted Matrix Search Code

int i = 0;

int j = n;

while (i != n) {

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])

j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i,j])

return true;

i = i + 1;

}

return false;
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Sorted Matrix Search Code

int i = 0;

int j = n;

{{ Inv: x not in M[k,l] for k < i and x ≤ M[i,j], ..., M[i,n-1] }}
while (i != n) {

{{ Inv: x not in M[k,l] for k < i and x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])

j = j – 1;

{{ x not in M[k,l] for k < i and M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i,j])

return true;

i = i + 1;

}

return false;
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