CSE 331

Software Design \& Implementation

Kevin Zatloukal
Spring 2020
Lecture 2 - Reasoning About Straight-Line Code

Hoare Logic

A Problem (from last time)

"Complete this method such that it returns the location of the largest value in the first n elements of the array arr."

```
int maxLoc(int[] arr, int n) {
}
```


A Solution?

```
int maxLoc(int[] arr, int n) {
```

 int maxIndex \(=0\);
 int maxValue \(=\) arr [0];
 for (int \(i=1 ; i<n ; i++\)) \(\{\)
 if (arr[i] > maxValue) \{
 maxIndex \(=1 ;\)
 maxValue \(=\) arr[i];
 \}
 \}
 return maxIndex;
 \}
No way to tell!

Corner cases:
-What if there are ties?

- What if n is 0 ?

Error cases:

- What if arr.length < n ?
- What if arr is null?

How to Check Correctness

- Step 1: need a specification for the function
- can't argue correctness if we don't know what it should do
- surprisingly difficult to write!
- Step 2: determine whether the code meets the specification
- apply reasoning
- surprisingly easy with the tools we will learn

Our approach: formal reasoning

- Hoare Logic: classic approach to logical reasoning about code
- named after its inventor, Sir Anthony Hoare
- formal description of correctness
- In practice, reasoning is less formal
- so it can be done at a faster pace
- Formal reasoning is still useful
- slower but "turn the crank"
- still used in practice for hard problems
- in general, formalism comes out when the problems become difficult

Terminology of Hoare Logic

- The program state is the values of all the (relevant) variables
- An assertion is a true / false claim (proposition) about the state at a given point during execution (e.g., on line 39)
- An assertion holds for a program state if the claim is true when the variables have those values
- An assertion before the code is a precondition
- these represent assumptions about when that code is used
- An assertion after the code is a postcondition
- these represent what we want the code to accomplish

Hoare Logic

- A Hoare triple is two assertions and one piece of code:
$\{P\} S\{Q\}$
- P the precondition
- S the code
- Q the postcondition

specification
method body
code is correct iff triple is valid
- A Hoare triple $\{P\} S\{Q\}$ is called valid if:
- in any state where P holds, executing S produces a state where Q holds
- i.e., if P is true before S, then Q must be true after it
- otherwise the triple is called invalid

Notation

- Hoare logic writes assertions in $\{.$.
- since Java code also has $\{.$.$\} , I will use \{\{\ldots\}\}$
- e.g., $\{\{\mathrm{w}>=1\}\} \mathbf{x}=2$ * $\mathrm{w} ;\{\{\mathrm{x}>=2\}\}$
- Assertions are math / logic not Java
- you can use the usual math notation
- (e.g., = instead of $==$ for equals)
- purpose is communication with other humans (not computers)
- we will need and, or, not as well
- can also write use \wedge (and) \vee (or) etc.
- The Java language also has assertions (assert statements)
- throws an exception if the condition does not evaluate true
- we will discuss these more later in the course

Example 1

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow
$\{\{\mathbf{x}!=0\}\} \mathbf{y}=\mathbf{x} * \mathbf{x} ;\{\{y>0\}\}$

Example 1

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow
$\{\{\mathbf{x}!=0\}\} \mathbf{y}=\mathbf{x} * \mathbf{x} ;\{\{y>0\}\}$

Valid

- \mathbf{y} could only be zero if \mathbf{x} were zero (which it isn't)

Example 2

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$
\{\{\mathrm{z}!=1\}\} \mathrm{y}=\mathrm{z} * \mathrm{z} ;\{\{\mathrm{y}!=\mathrm{z}\}\}
$$

Example 2

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$
\{\{\mathrm{z}!=1\}\} \mathrm{y}=\mathrm{z} * \mathrm{z} ;\{\{\mathrm{y}!=\mathrm{z}\}\}
$$

Invalid

- counterexample: $\mathbf{z}=0$

Checking Validity

- So far: decided if a Hoare triple is valid by ... hard thinking
- Soon: "turn the crank" methods for reasoning about
- assignment statements
- conditionals
- [next lecture] loops
- (all code can be understood in terms of those 3 elements)
- Can use those to check correctness in a "turn the crank" manner
- Next: a way to compare different assertions
- useful, e.g., to compare possible preconditions

Weaker vs. Stronger Assertions

If $P 1$ implies $P 2$ (written $P 1 \Rightarrow P 2$), then:

- P 1 is stronger than P 2
- P2 is weaker than P1

Whenever P1 holds, P2 also holds

- So it is more (or at least as) "difficult" to satisfy P1
- the program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it is a stronger set of requirements on the program state
- P1 gives you more information about the state than P2

Examples

- $\mathbf{x}=17$ is stronger than $\mathbf{x}>0$
- \mathbf{x} is prime is neither stronger nor weaker than \mathbf{x} is odd
- \mathbf{x} is prime and $\mathbf{x}>2$ is stronger than \mathbf{x} is odd

Hoare Logic Facts

- Suppose $\{P\} S\{Q\}$ is valid.
- If P1 is stronger than P, then $\{P 1\} S\{Q\}$ is valid.
- If Q1 is weaker than Q , then $\{P\} S\{Q 1\}$ is valid.
- Example:

- Suppose P is $x>=0$ and $P 1$ is $x>0$
- Suppose Q is $y>0$ and $Q 1$ is $y>=0$
- Since $\{\{x>=0\}\} y=x+1\{\{y>0\}\}$ is valid, $\{\{x>0\}\} y=x+1\{\{y>=0\}\}$ is also valid

Hoare Logic Facts

- Suppose $\{P\} S\{Q\}$ is valid.
- If P1 is stronger than P, then $\{P 1\} S\{Q\}$ is valid.
- If Q1 is weaker than Q , then $\{P\} S\{Q 1\}$ is valid.
- Key points:

- always okay to strengthen a precondition
- always okay to weaken a postcondition

Forward \& Backward Reasoning

Example of Forward Reasoning

Work forward from the precondition

```
{{w>0 }}
    x = 17;
{{\}\}
    y = 42;
{{
    z=w +x+y;
{{
    }}
```


Example of Forward Reasoning

Work forward from the precondition

```
{{ w>0 }}
    x = 17;
{{ w > 0 and x=17 }}
    y = 42;
{{
    z=w+x+y;
{{
    }}
```


Example of Forward Reasoning

Work forward from the precondition

$$
\begin{aligned}
& \{\{w>0\}\} \\
& \mathbf{x}=17 ; \\
& \{\{w>0 \text { and } x=17\}\} \\
& y=42 ; \\
& \{\{w>0 \text { and } x=17 \text { and } y=42\}\} \\
& z=w+x+y ; \\
& \{\{
\end{aligned}
$$

Example of Forward Reasoning

Work forward from the precondition

$$
\begin{aligned}
\{\{w & >0\}\} \\
\mathbf{x} & =17 ; \\
\{\{w & >0 \text { and } x=17\}\} \\
y & =42 ; \\
\{\{w & >0 \text { and } x=17 \text { and } y=42\}\} \\
z & =w+x+y ; \\
\{\{w & >0 \text { and } x=17 \text { and } y=42 \text { and } z=w+x+y\}\}
\end{aligned}
$$

Example of Forward Reasoning

Work forward from the precondition

$$
\begin{aligned}
\{\{w & >0\}\} \\
x & =17 ; \\
\{\{w & >0 \text { and } x=17\}\} \\
y & =42 ; \\
\{\{w & >0 \text { and } x=17 \text { and } y=42\}\} \\
z & =w+x+y ; \\
\{\{w & >0 \text { and } x=17 \text { and } y=42 \text { and } z=w+59\}\}
\end{aligned}
$$

Forward Reasoning

- Start with the given precondition
- Fill in the strongest postcondition
- For an assignment, $\mathbf{x}=\mathbf{y}$...
- add the fact " $x=y$ " to what is known
- important subtleties here... (more on those later)
- Later: if statements and loops...

Example of Backward Reasoning

Work backward from the desired postcondition

$$
\begin{aligned}
& \{\{ \\
& \mathbf{x}=17 ; \\
& \{\{ \\
& \left.\left.\begin{array}{l}
\mathbf{y}=42 ; \\
\{\{ \\
z=w+x+y ; \\
\{\{z<0\}\}
\end{array}\right\}\right\}
\end{aligned}
$$

Example of Backward Reasoning

Work backward from the desired postcondition

$$
\begin{aligned}
& \{\{ \\
& \begin{array}{l}
\mathbf{x}=17 ; \\
\{\{ \\
\mathbf{y}=42 ; \\
\{\{w+x+y<0\}\} \\
\mathbf{z}=w+x+y ; \\
\{\{z<0\}\}
\end{array}
\end{aligned}
$$

Example of Backward Reasoning

Work backward from the desired postcondition

$$
\begin{aligned}
& \{\{ \\
& \begin{array}{l}
x=17 ; \\
\{\{w+x+42<0\}\} \\
y=42 ; \\
\{\{w+x+y<0\}\} \\
z=w+x+y ; \\
\{\{z<0\}\}
\end{array}
\end{aligned}
$$

Example of Backward Reasoning

Work backward from the desired postcondition

$$
\begin{aligned}
& \{\{w+17+42<0\}\} \\
& \mathbf{x}=17 ; \\
& \{\{w+x+42<0\}\} \\
& \mathbf{y}=42 ; \\
& \{\{w+x+y<0\}\} \\
& z=w+x+y ; \\
& \{\{z<0\}\}
\end{aligned}
$$

Backward Reasoning

- Start with the required postcondition
- Fill in the weakest precondition
- For an assignment, $\mathbf{x}=\mathbf{y}$:
- just replace "x" with " y " in the postcondition
- if the condition using " y " holds beforehand, then the condition with "x" will afterward since $x=y$ then
- Later: if statements and loops...

Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:
$\{\{w>0\}\}$
$\mathbf{x}=17$;
$y=42$;
$\mathrm{z}=\mathrm{w}+\mathrm{x}+\mathrm{y}$;
$\{\{z>50\}\}$

Example of Forward Reasoning

$$
\begin{aligned}
& \{\{w>0\}\} \\
& \mathbf{x}=17 ; \\
& \{\{w>0 \text { and } x=17\}\} \\
& \mathbf{y}=42 ; \\
& \{\{w>0 \text { and } x=17 \text { and } y=42\}\} \\
& \mathbf{z}=\mathbf{w}+\mathbf{x}+\mathbf{y} ; \\
& \{\{w>0 \text { and } x=17 \text { and } y=42 \text { and } z=w+59\}\} \\
& \{\{z>50\}\}
\end{aligned}
$$

(Recall that weakening the postcondition is always okay.)

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

$$
\begin{aligned}
\{\{w & <-60\}\} \\
\mathbf{x} & =17 ; \\
\mathbf{y} & =42 ; \\
z & =w+x+y ; \\
\{\{z & <0\}\}
\end{aligned}
$$

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

$$
\begin{aligned}
& \{\{\mathrm{w}<-60\}\} \\
& \{\{w+17+42<0\}\} \Leftrightarrow\{\{w<-59\}\} \\
& \mathbf{x}=17 \text {; } \\
& \{\{w+x+42<0\}\} \\
& \text { (Recall that strengthening the precondition is always okay.) } \\
& \mathrm{y}=42 \text {; } \\
& \{\{w+x+y<0\}\} \\
& \mathbf{z}=\mathbf{w}+\mathbf{x}+\mathrm{y} ; \\
& \{\{\mathrm{z}<0\}\}
\end{aligned}
$$

Combining Forward \& Backward

It is okay to use both types of reasoning

- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:

```
{{P }}
    S1
    S2
{{ Q }}
```


Combining Forward \& Backward

It is okay to use both types of reasoning

- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:

Combining Forward \& Backward

Reasoning in either direction gives valid assertions Just need to check adjacent assertions:

- top assertion must imply bottom one
$\left.\left.\begin{array}{c|cc}\{\{P\}\} \\ s 1 \\ \{\{P 1\}\} \\ \{\{Q 1\}\}\end{array}\right] \quad \begin{array}{cc}\{\{P\}\} & \{\{P\}\} \\ s 1 & \{\{Q 1\}\}\end{array}\right]$.

Subtleties in Forward Reasoning...

- Forward reasoning can fail if applied blindly...

$$
\begin{aligned}
& \{\}\} \\
& \begin{array}{l}
w
\end{array}=\mathbf{x}+\mathbf{y} ; \\
& \{\{w=x+y\}\} \\
& \mathbf{x}=4 ; \\
& \{\{w=x+y \text { and } x=4\}\} \\
& \mathbf{y}=3 ; \\
& \{\{w=x+y \text { and } x=4 \text { and } y=3\}\}
\end{aligned}
$$

This implies that $w=7$, but that is not true!

- w equals whatever $x+y$ was before they were changed

Fix 1

- Use subscripts to refer to old values of the variables
- Un-subscripted variables should always mean current value

```
\{ \(\}\)
    \(\mathbf{w}=\mathbf{x}+\mathbf{y}\);
\(\{\{w=x+y\}\}\)
    \(\mathbf{x}=4 ;\)
\(\left\{\left\{\mathrm{w}=\mathrm{x}_{1}+\mathrm{y}\right.\right.\) and \(\left.\left.\mathrm{x}=4\right\}\right\}\)
    \(\mathrm{y}=3\);
\(\left\{\left\{w=x_{1}+y_{1}\right.\right.\) and \(x=4\) and \(\left.\left.y=3\right\}\right\}\)
```


Fix 2 (better)

- Express prior values in terms of the current value

```
\{ \(\{\) \}\}
    \(w=x+y ;\)
\(\{\{w=x+y\}\}\)
    \(\mathbf{x}=\mathbf{x}+4 ;\)
\(\left\{\left\{\mathrm{w}=\mathrm{x}_{1}+\mathrm{y}\right.\right.\) and \(\left.\left.\mathrm{x}=\mathrm{x}_{1}+4\right\}\right\}\) Now, \(\mathrm{x}_{1}=\mathrm{x}-4\)
\(\Rightarrow\{\{w=x-4+y\}\} \quad\) So \(w=x_{1}+y \Leftrightarrow w=x-4+y\)
```

Note for updating variables, e.g., $\mathbf{x}=\mathbf{x}+4$:

- Backward reasoning just substitutes new value (no change)
- Forward reasoning requires you to invert the "+" operation

Forward vs. Backward

- Forward reasoning:
- Find strongest postcondition
- Intuitive: "simulate" the code in your head
- BUT you need to change facts to refer to prior values
- Inefficient: Introduces many irrelevant facts
- usually need to weaken as you go to keep things sane
- Backward reasoning
- Find weakest precondition
- Formally simpler
- Efficient
- (Initially) unintuitive

If Statements

If Statements

Forward reasoning

```
{{ P }}
if (cond)
    S1
else
    S2
{{ ? }}
```


If Statements

Forward reasoning

```
{{ P }}
    if (cond)
        {{ P and cond }}
        S1
    else
        {{P and not cond }}
        S2
    {{ ? }}
```


If Statements

Forward reasoning

```
{{ P }}
if (cond)
        {{P and cond }}
        S1
    {{P1 }}
else
        {{P and not cond }}
        S2
    | {{ P2 }}
{{ ?}}
```


If Statements

Forward reasoning

```
{{ P }}
    if (cond)
        {{ P and cond }}
        S1
            {{ P1 }}
    else
        {{ P and not cond }}
        S2
        {{ P2 }}
{{ P1 or P2 }}
```


If Statements

Backward reasoning

```
{{ ? }}
    if (cond)
    S1
    else
    S2
{{ Q }}
```


If Statements

Backward reasoning

```
{{ ?}}
    if (cond)
        S1
        {{ Q }}
else
    S2
        {{ Q }}
{{Q }}
```


If Statements

Backward reasoning

```
{{ ?}}
    if (cond)
    {{ Q1 }}
    S1
    {{Q}}
else
    ^ {{ Q2 }}
    S2
    {{Q}}
{{Q}}
```


If Statements

```
Backward reasoning
\{\{ cond and Q1 or
not cond and Q2 \}\}
if (cond)
\{\{ Q1 \}\}
S1
\{\{ Q \}\}
else
\{\{ Q2 \}\}
S2
\{\{ Q \}\}
\{\{ Q \}\}
```


If-Statement Example

Forward reasoning
\{ $\}$

$$
\begin{aligned}
& \text { if }(x>=0) \\
& y=x ; \\
& \text { else } \\
& y=-x ; \\
& \{\{?\}\}
\end{aligned}
$$

If-Statement Example

Forward reasoning

$$
\begin{aligned}
& \{\}\} \\
& \text { if } \quad(x>=0) \\
& \longrightarrow\{\{x>=0\}\} \\
& \quad y=x ; \\
& \text { else } \\
& \longrightarrow\{\{x<0\}\} \\
& \quad y=-x ; \\
& \{\{?\}\}
\end{aligned}
$$

If-Statement Example

Forward reasoning
\{ $\}$

```
if ( \(x\) >= 0)
    \(\{\{x>=0\}\}\)
    \(y=x\);
    \(\{\{x>=0\) and \(y=x\}\}\)
else
    \(\{\{x<0\}\}\)
    \(y=-x ;\)
    - \(\{\{x<0\) and \(y=-x\}\}\)
\{\{ ? \}\}
```


If-Statement Example

Forward reasoning
\{ $\}$ \}
if ($x>=0$)
\{\{ $x>=0\}\}$
$y=x ;$
$\{\{x>=0$ and $y=x\}\}$
else
$\{\{x<0\}\}$
$y=-x ;$
$\{\{x<0$ and $y=-x\}\}$
$\{\{(x>=0$ and $y=x)$ or
($x<0$ and $y=-x$) \}\}

If-Statement Example

Forward reasoning
\{ $\}$

$$
\begin{aligned}
& \text { if } \quad(x>=0) \\
& \{\{x>=0\}\} \\
& y=x ; \\
& \{\{x>=0 \text { and } y=x\}\} \\
& \text { else } \\
& \{\{x<0\}\} \\
& y=-x ; \\
& \{\{x<0 \text { and } y=-x\}\} \\
& \{\{y=|x|\}\}
\end{aligned}
$$

If-Statement Example

Forward reasoning
\{ $\}$ \}

```
if (x >= 0)
    \(\{\{x>=0\}\}\)
    \(y=x ;\)
    \(\{\{x>=0\) and \(y=x\}\}\)
else
    \(\{\{x<0\}\}\)
    \(y=-x ;\)
    \(\{\{x<0\) and \(y=-x\}\}\)
\(\{\{y=|x|\}\}\)
```

$\{\{x>=0\}\}$
$y=x ;$
$\{\{x>=0$ and $y=x\}\}$
else
$\{\{x<0\}\}$
$y=-x ;$
$\{\{x<0$ and $y=-x\}\}$
$\{\{y=|x|\}\}$

Warning: many write $\{\{\mathrm{y}>=0$ \}\} here
That is true but it is strictly weaker. (It includes cases where $\mathrm{y}!=\mathrm{x}$)

If-Statement Example

Forward reasoning

```
{{ }}
if (x >= 0)
    {{x>=0 }}
    y = x;
    {{ x >= 0 and y = x }}
else
    {{x<0 }}
    y = -x;
    {{x<0 and y=-x}}
{{ y = |x| }}
```

Backward reasoning

$$
\begin{aligned}
& \{\{?\}\} \\
& \text { if } \quad(x>=0) \\
& y=x ; \\
& \text { else } \\
& \quad y=-x ; \\
& \{\{y=|x|\}\}
\end{aligned}
$$

If-Statement Example

Forward reasoning

```
{{}}
if (x >= 0)
    {{x>=0 }}
    y = x;
    {{x >= 0 and y = x }}
else
    {{x<0 }}
    y = -x;
    {{x<0 and y=-x }}
{{ y = |x }}
```

Backward reasoning

$$
\begin{aligned}
& \{\{?\}\} \\
& \text { if } \quad(x>=0) \\
& y=x ; \\
& \longrightarrow\{\{y=|x|\}\} \\
& \text { else } \\
& \quad y=-x ; \\
& \longrightarrow\{\{y=|x|\}\} \\
& \{\{y=|x|\}\}
\end{aligned}
$$

If-Statement Example

Forward reasoning

```
{{ }}
if (x >= 0)
    {{x>=0 }}
    y = x;
    {{ x >= 0 and y = x }}
else
    {{x<0 }}
    Y = -x;
    {{x<0 and y=-x}}
{{y=|x| }}
```

Backward reasoning

$$
\begin{aligned}
& \{\{?\}\} \\
& \text { if } \quad(x>=0) \\
& \left\{\begin{array}{l}
\{\{x=|x|\}\} \\
y=x ; \\
\{\{y=|x|\}\}
\end{array}\right. \\
& \text { else } \\
& \left\{\begin{array}{l}
\{\{-x=|x|\}\} \\
y=-x ; \\
\{\{y=|x|\}\}
\end{array}\right. \\
& \{\{y=|x|\}\}
\end{aligned}
$$

If-Statement Example

Forward reasoning

```
{{}}
if (x >= 0)
    {{x>= 0 }}
    y = x;
    {{ x >= 0 and y = x }}
else
    {{x<0 }}
    Y = -x;
    {{x<0 and y=-x}}
{{y=|x| }}
```

Backward reasoning

$$
\begin{aligned}
& \{\{?\}\} \\
& \text { if } \quad(x>=0) \\
& \{\{x>=0\}\} \\
& y=x ; \\
& \{\{y=|x|\}\} \\
& \text { else } \\
& \{\{x<=0\}\} \\
& y=-x ; \\
& \{\{y=|x|\}\} \\
& \{\{y=|x|\}\}
\end{aligned}
$$

If-Statement Example

Forward reasoning
\{ $\}\}$

$$
\begin{aligned}
& \text { if } \quad(x>=0) \\
& \{\{x>=0\}\} \\
& y=x ; \\
& \{\{x>=0 \text { and } y=x\}\} \\
& \text { else } \\
& \{\{x<0\}\} \\
& y=-x ; \\
& \{\{x<0 \text { and } y=-x\}\} \\
& \{\{y=|x|\}\}
\end{aligned}
$$

Backward reasoning

$$
\begin{aligned}
& \{\{(x>=0 \text { and } x>=0) \text { or } \\
& \quad(x<0 \text { and } x<=0)\}\} \\
& \text { if } \quad(x>=0) \\
& \{\{x>=0\}\} \\
& y=x ; \\
& \{\{y=|x|\}\} \\
& \text { else } \\
& \{\{x<=0\}\} \\
& y=-x ; \\
& \{\{y=|x|\}\} \\
& \{\{y=|x|\}\}
\end{aligned}
$$

If-Statement Example

Forward reasoning
\{ $\}$ \}\}
if ($x>=0$)
$\{\{x>=0\}\}$
$y=x ;$
$\{\{x>=0$ and $y=x\}\}$
else
$\{\{x<0\}\}$
$y=-x ;$
$\{\{x<0$ and $y=-x\}\}$
$\{\{y=|x|\}\}$

Backward reasoning

$$
\begin{gathered}
\{\{x>=0 \text { or } x<0\}\} \\
\text { if } \quad(x>=0) \\
\{\{x>=0\}\} \\
y=x ; \\
\{\{y=|x|\}\} \\
\text { else } \\
\{\{x<=0\}\} \\
y=-x ; \\
\{\{y=|x|\}\} \\
\{\{y=|x|\}\}
\end{gathered}
$$

If-Statement Example

Forward reasoning
\{ $\}\}$
if ($x>=0$)
$\{\{x>=0\}\}$
$y=x ;$
$\{\{x>=0$ and $y=x\}\}$
else
$\{\{x<0\}\}$
$y=-x ;$
$\{\{x<0$ and $y=-x\}\}$
$\{\{y=|x|\}\}$

Backward reasoning
\{ $\}$ \}\}

$$
\begin{gathered}
\text { if } \quad(x>=0) \\
\{\{x>=0\}\} \\
y=x ; \\
\{\{y=|x|\}\} \\
\text { else } \\
\{\{x<=0\}\} \\
y=-x \\
\{\{y=|x|\}\} \\
\{\{y=|x|\}\}
\end{gathered}
$$

Next time: Loops...

