CSE 331 Software Design & Implementation

Kevin Zatloukal Spring 2020

Lecture 2 – Reasoning About Straight-Line Code

Hoare Logic

A Problem (from last time)

"Complete this method such that it returns the location of the largest value in the first **n** elements of the array **arr**."

```
int maxLoc(int[] arr, int n) {
    ...
}
```

A Solution?

```
int maxLoc(int[] arr, int n) {
  int maxIndex = 0;
  int maxValue = arr[0];
  for (int i = 1; i < n; i++) {</pre>
    if (arr[i] > maxValue) {
      maxIndex = i;
      maxValue = arr[i];
  return maxIndex;
```

No way to tell!

Corner cases:

- What if there are ties?
- What if n is 0?

Error cases:

- What if arr.length < n?
- What if arr is null?

How to Check Correctness

- Step 1: need a specification for the function
 - can't argue correctness if we don't know what it should do
 - surprisingly difficult to write!
- Step 2: determine whether the code meets the specification
 - apply reasoning
 - surprisingly easy with the tools we will learn

Our approach: formal reasoning

- Hoare Logic: classic approach to logical reasoning about code
 - named after its inventor, Sir Anthony Hoare
 - formal description of correctness
- In practice, reasoning is less formal
 - so it can be done at a faster pace
- Formal reasoning is still useful
 - slower but "turn the crank"
 - still used in practice for hard problems
 - in general, formalism comes out when the problems become difficult

Terminology of Hoare Logic

- The program state is the values of all the (relevant) variables
- An assertion is a true / false claim (proposition) about the state at a given point during execution (e.g., on line 39)
- An assertion holds for a program state if the claim is true when the variables have those values

- An assertion before the code is a precondition
 - these represent assumptions about when that code is used
- An assertion after the code is a postcondition
 - these represent what we want the code to accomplish

Hoare Logic

A Hoare triple is two assertions and one piece of code:

- P the precondition
- S the code
- Q the postcondition

code is correct iff triple is valid

- A Hoare triple { P } S { Q } is called valid if:
 - in any state where P holds,
 executing S produces a state where Q holds
 - i.e., if P is true before S, then Q must be true after it
 - otherwise the triple is called invalid

Notation

- Hoare logic writes assertions in {..}
 - since Java code also has {..}, I will use {{...}}
 - $e.g., \{\{ w \ge 1 \}\} x = 2 * w; \{\{ x \ge 2 \}\}$
- Assertions are math / logic not Java
 - you can use the usual math notation
 - (e.g., = instead of == for equals)
 - purpose is communication with other humans (not computers)
 - we will need and, or, not as well
 - can also write use ∧ (and) ∨ (or) etc.
- The Java language also has assertions (assert statements)
 - throws an exception if the condition does not evaluate true
 - we will discuss these more later in the course

Is the following Hoare triple valid or invalid?

assume all variables are integers and there is no overflow

$$\{\{x != 0\}\}\ y = x*x; \{\{y > 0\}\}\$$

Is the following Hoare triple valid or invalid?

assume all variables are integers and there is no overflow

$$\{\{x != 0\}\}\ y = x*x; \{\{y > 0\}\}\$$

Valid

y could only be zero if x were zero (which it isn't)

Is the following Hoare triple valid or invalid?

assume all variables are integers and there is no overflow

$$\{\{z != 1\}\}\ y = z*z; \{\{y != z\}\}$$

Is the following Hoare triple valid or invalid?

assume all variables are integers and there is no overflow

$$\{\{z != 1\}\}\ y = z*z; \{\{y != z\}\}$$

Invalid

• counterexample: z = 0

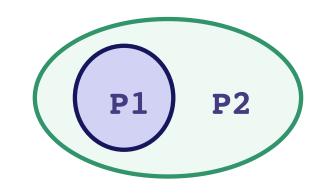
Checking Validity

- So far: decided if a Hoare triple is valid by ... hard thinking
- Soon: "turn the crank" methods for reasoning about
 - assignment statements
 - conditionals
 - [next lecture] loops
 - (all code can be understood in terms of those 3 elements)
- Can use those to check correctness in a "turn the crank" manner
- Next: a way to compare different assertions
 - useful, e.g., to compare possible preconditions

Weaker vs. Stronger Assertions

If P1 implies P2 (written P1 \Rightarrow P2), then:

- P1 is stronger than P2
- P2 is weaker than P1



Whenever P1 holds, P2 also holds

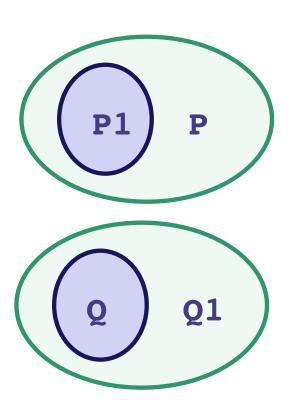
- So it is more (or at least as) "difficult" to satisfy P1
 - the program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it is a stronger set of requirements on the program state
 - P1 gives you more information about the state than P2

- x = 17 is stronger than x > 0
- x is prime is neither stronger nor weaker than x is odd
- x is prime and x > 2 is stronger than x is odd

Hoare Logic Facts

- Suppose {P} S {Q} is valid.
- If P1 is stronger than P, then {P1} S {Q} is valid.
- If Q1 is weaker than Q, then {P} S {Q1} is valid.

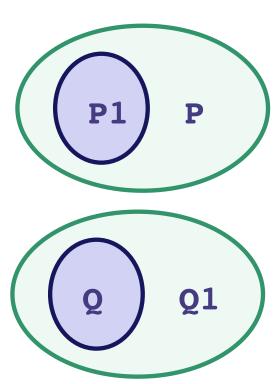
- Suppose P is $x \ge 0$ and P1 is $x \ge 0$
- Suppose Q is y > 0 and Q1 is y >= 0
- Since $\{\{x \ge 0\}\}\ y = x+1 \{\{y \ge 0\}\}\$ is valid, $\{\{x \ge 0\}\}\ y = x+1 \{\{y \ge 0\}\}\$ is also valid



Hoare Logic Facts

- Suppose {P} S {Q} is valid.
- If P1 is stronger than P,
 then {P1} S {Q} is valid.
- If Q1 is weaker than Q, then {P} S {Q1} is valid.

- always okay to strengthen a precondition
- always okay to weaken a postcondition



Forward & Backward Reasoning

```
\{\{w > 0\}\}\}
x = 17;
\{\{w > 0 \text{ and } x = 17\}\}
y = 42;
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42\}\}
z = w + x + y;
\{\{\{w > 0\}\}\}
```

```
\{\{w > 0\}\}\
\mathbf{x} = 17;
\{\{w > 0 \text{ and } x = 17\}\}\
\mathbf{y} = 42;
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42\}\}\
\mathbf{z} = \mathbf{w} + \mathbf{x} + \mathbf{y};
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42 \text{ and } z = w + x + y\}\}
```

```
\{\{w > 0\}\}\
\mathbf{x} = 17;
\{\{w > 0 \text{ and } x = 17\}\}\
\mathbf{y} = 42;
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42\}\}\
\mathbf{z} = \mathbf{w} + \mathbf{x} + \mathbf{y};
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42 \text{ and } z = w + 59}\}\}
```

Forward Reasoning

- Start with the given precondition
- Fill in the strongest postcondition
- For an assignment, x = y...
 - add the fact "x = y" to what is known
 - important <u>subtleties</u> here... (more on those later)
- Later: if statements and loops...

```
 \{\{ w + 17 + 42 < 0 \}\} 
 x = 17; 
 \{\{ w + x + 42 < 0 \}\} 
 y = 42; 
 \{\{ w + x + y < 0 \}\} 
 z = w + x + y; 
 \{\{ z < 0 \}\}
```

Backward Reasoning

- Start with the required postcondition
- Fill in the weakest precondition
- For an assignment, x = y:
 - just replace "x" with "y" in the postcondition
 - if the condition using "y" holds beforehand, then the condition with "x" will afterward since x = y then
- Later: if statements and loops...

Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:

```
\{\{ w > 0 \}\}

x = 17;

y = 42;

z = w + x + y;

\{\{ z > 50 \}\}
```

```
\{\{ w > 0 \}\}
 x = 17;
\{\{ w > 0 \text{ and } x=17 \} \}
 y = 42;
\{\{ w > 0 \text{ and } x=17 \text{ and } y=42 \}\}
  z = w + x + y;
\{\{ w > 0 \text{ and } x=17 \text{ and } y=42 \text{ and } z = w + 59 \}\}
\{\{z > 50\}\}\
```

Do the facts that are always true imply the facts we need?

I.e., is the bottom statement weaker than the top one?

(Recall that weakening the postcondition is always okay.)

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

```
\{\{ w < -60 \} \}

x = 17;

y = 42;

z = w + x + y;

\{\{ z < 0 \} \}
```

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

```
\{\{ w < -60 \} \}
\{\{ w + 17 + 42 < 0 \}\} \iff \{\{ w < -59 \}\}
 x = 17;
\{\{ w + x + 42 < 0 \}\}
 y = 42;
\{\{ w + x + y < 0 \}\}
  z = w + x + y;
\{\{z < 0\}\}\
```

Do the facts that are always true imply the facts we need?

I.e., is the top statement stronger than the bottom one?

(Recall that strengthening the precondition is always okay.)

Combining Forward & Backward

It is okay to use both types of reasoning

- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:

```
{{ P }}
s1
s2
{{ Q }}
```

Combining Forward & Backward

It is okay to use both types of reasoning

- Reason forward from precondition
- Reason backward from postcondition

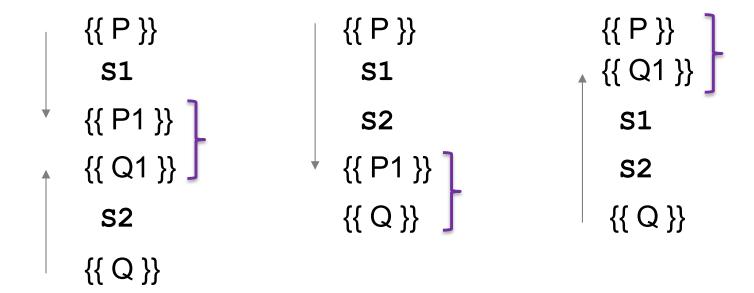
Will meet in the middle:

Combining Forward & Backward

Reasoning in either direction gives valid assertions

Just need to check adjacent assertions:

top assertion must imply bottom one



Subtleties in Forward Reasoning...

Forward reasoning can fail if applied blindly...

```
{{}}

\mathbf{w} = \mathbf{x} + \mathbf{y};

{{} \mathbf{w} = \mathbf{x} + \mathbf{y}}

\mathbf{x} = \mathbf{4};

{{} \mathbf{w} = \mathbf{x} + \mathbf{y} and \mathbf{x} = \mathbf{4}}

\mathbf{y} = \mathbf{3};

{{} \mathbf{w} = \mathbf{x} + \mathbf{y} and \mathbf{x} = \mathbf{4} and \mathbf{y} = \mathbf{3}}
```

This implies that w = 7, but that is not true!

w equals whatever x + y was before they were changed

Fix 1

- Use subscripts to refer to old values of the variables
- Un-subscripted variables should always mean current value

```
{{}}

\mathbf{w} = \mathbf{x} + \mathbf{y};

{{\mathbf{w} = \mathbf{x} + \mathbf{y}}

\mathbf{x} = \mathbf{4};

{{\mathbf{w} = \mathbf{x}_1 + \mathbf{y} \text{ and } \mathbf{x} = \mathbf{4}}

\mathbf{y} = \mathbf{3};

{{\mathbf{w} = \mathbf{x}_1 + \mathbf{y}_1 \text{ and } \mathbf{x} = \mathbf{4} \text{ and } \mathbf{y} = \mathbf{3}}
```

Fix 2 (better)

Express prior values in terms of the current value

```
{{}}

\mathbf{w} = \mathbf{x} + \mathbf{y};

{{\mathbf{w} = \mathbf{x} + \mathbf{y}}

\mathbf{x} = \mathbf{x} + \mathbf{4};

{{\mathbf{w} = \mathbf{x}_1 + \mathbf{y} \text{ and } \mathbf{x} = \mathbf{x}_1 + \mathbf{4}} Now, \mathbf{x}_1 = \mathbf{x} - \mathbf{4}

\Rightarrow {{\mathbf{w} = \mathbf{x}_1 + \mathbf{y} \text{ and } \mathbf{x} = \mathbf{x}_1 + \mathbf{4}} So \mathbf{w} = \mathbf{x}_1 + \mathbf{y} \Leftrightarrow \mathbf{w} = \mathbf{x} - \mathbf{4} + \mathbf{y}
```

Note for updating variables, e.g., x = x + 4:

- Backward reasoning just substitutes new value (no change)
- Forward reasoning requires you to invert the "+" operation

Forward vs. Backward

- Forward reasoning:
 - Find strongest postcondition
 - Intuitive: "simulate" the code in your head
 - BUT you need to change facts to refer to prior values
 - Inefficient: Introduces many irrelevant facts
 - usually need to weaken as you go to keep things sane
- Backward reasoning
 - Find weakest precondition
 - Formally simpler
 - Efficient
 - (Initially) unintuitive

```
{{ P }}
if (cond)
   S1
else
   S2
{{ ? }}
```

```
{{ P}}
  if (cond)
  → {{ P and cond }}
    S1
  else
  → {{ P and not cond }}
    S2
  {{ ? }}
```

```
{{ P}}
if (cond)
  {{ P and cond }}
↓ {{ P1 }}
else
  {{ P and not cond }}
{{ ? }}
```

```
{{ P}}
 if (cond)
   {{ P and cond }}
    S1
   {{ P1 }}
 else
   {{ P and not cond }}
    S2
   - {{ P2 }}
{{ P1 or P2 }}
```

```
{{?}}
if (cond)
   S1
else
   S2
{{ Q }}
```

```
{{ ? }}
if (cond)
 1 {{ Q1 }}
   {{ Q }}
else
 1 {{ Q2 }}
   {{ Q }}
{{ Q }}
```

```
Backward reasoning
  {{ cond and Q1 or
    not cond and Q2 }}
  if (cond)
   - {{ Q1 }}
     S1
     {{ Q }}
  else
   - {{ Q2 }}
     S2
     {{ Q }}
  {{ Q }}
```

```
{{ }}
if (x >= 0)
  y = x;
else
  y = -x;
{{ ? }}
```

```
{{}}
if (x >= 0)
   \{\{ x >= 0 \}\}
 y = x;
 \downarrow {{ x >= 0 and y = x }}
else
 \{\{ x < 0 \}\}
y = -x;
 \sqrt{\{\{x < 0 \text{ and } y = -x \}\}}
{{ ? }}
```

```
{{}}
 if (x >= 0)
     \{\{ x >= 0 \}\}
     y = x;
   - {{ x >= 0 and y = x }}
 else
     \{\{ x < 0 \}\}
     y = -x;
  -- {{ x < 0 and y = -x }}</pre>
\{\{(x >= 0 \text{ and } y = x) \text{ or } \}
    (x < 0 \text{ and } y = -x) \}
```

```
{{}}
if (x >= 0)
    \{\{ x >= 0 \}\}
    y = x;
    \{\{ x >= 0 \text{ and } y = x \}\}
else
    \{\{ x < 0 \}\}
    y = -x;
    \{\{ x < 0 \text{ and } y = -x \}\}
\{\{ y = |x| \} \}
```

Forward reasoning

```
{{}}
if (x >= 0)
    \{\{ x >= 0 \}\}
    y = x;
    \{\{ x >= 0 \text{ and } y = x \}\}
else
    \{\{ x < 0 \}\}
    y = -x;
    \{\{ x < 0 \text{ and } y = -x \} \}
\{\{ y = |x| \} \}
```

Warning: many write {{ y >= 0 }} here

That is true but it is *strictly* weaker. (It includes cases where y != x)

Forward reasoning

```
{{ }}
if (x >= 0)
   {{ x >= 0 }}
   y = x;
   {{ x >= 0 and y = x }}
else
   {{ x < 0 }}
   y = -x;
   {{ x < 0 and y = -x }}
{{ y = |x| }}</pre>
```

Forward reasoning

```
{{ }}
if (x >= 0)
   {{ x >= 0 }}
   y = x;
   {{ x >= 0 and y = x }}
else
   {{ x < 0 }}
   y = -x;
   {{ x < 0 and y = -x }}
{{ y = |x| }}</pre>
```

Forward reasoning

```
{{ }}
if (x >= 0)
    {{ x >= 0 }}
    y = x;
    {{ x >= 0 and y = x }}
else
    {{ x < 0 }}
    y = -x;
    {{ x < 0 and y = -x }}
{{ y = |x| }}</pre>
```

Forward reasoning

```
{{}}
if (x >= 0)
    \{\{ x >= 0 \}\}
    y = x;
    \{\{ x >= 0 \text{ and } y = x \}\}
else
    \{\{ x < 0 \} \}
    y = -x;
    \{\{ x < 0 \text{ and } y = -x \} \}
\{\{ y = |x| \} \}
```

Forward reasoning

```
{{}}
if (x >= 0)
    \{\{ x >= 0 \}\}
    y = x;
    \{\{ x >= 0 \text{ and } y = x \}\}
else
    \{\{ x < 0 \}\}
    y = -x;
    \{\{ x < 0 \text{ and } y = -x \}\}
\{\{ y = |x| \} \}
```

Forward reasoning

```
{{}}
if (x >= 0)
    \{\{ x >= 0 \}\}
    y = x;
    \{\{ x >= 0 \text{ and } y = x \}\}
else
    \{\{ x < 0 \}\}
    y = -x;
    \{\{ x < 0 \text{ and } y = -x \} \}
\{\{ y = |x| \} \}
```

Forward reasoning

{{}} if (x >= 0) $\{\{ x >= 0 \}\}$ y = x; $\{\{ x >= 0 \text{ and } y = x \}\}$ else $\{\{ x < 0 \}\}$ y = -x; $\{\{ x < 0 \text{ and } y = -x \} \}$ $\{\{ y = |x| \} \}$

Next time: Loops...