
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2020

Lecture 1 – Introduction & Administrivia
(Based on slides by Mike Ernst, Dan Grossman, and many others)

CSE 331 Spring 2020 1

Motivation

What is the goal of CSE 331?

How to build harder-to-build software
• Move from CSE 143 problems toward what you’ll see

in upper-level courses and in industry

Specifically, how to write code of
• Higher quality
• Increased complexity

We will discuss tools and techniques to help with this and the
concepts and ideas behind them

– There are timeless principles to both
– Widely used across the industry

CSE 331 Spring 2020 3

What is high quality?

Code is high quality when it is

1. Correct
– Everything else is of secondary importance

2. Easy to change
– Most work is making changes to existing systems

3. Easy to understand
– Needed for 1 & 2 above

CSE 331 Spring 2020 4

How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and

one black shoe

What is increased complexity?

Analogy to building physical objects:
• 100 well-tested LOC = a nice cabinet
• 2,500 LOC = a room with furniture
• 2,500,000 LOC = 1000 rooms ≈

CSE 331 Spring 2020 6

North Carolina class WW2 battleship

CSE 331 Spring 2020 7

≈
the entire British Naval fleet in WW2

Actually, software is more complex…

• Every bit of code is unique, individually designed
–US built 10 identical Essex carriers

–Software equivalent would be one carrier 10 times as large:

• Defects can be even more destructive
– A defect in one room can sink the ship
– But a defective OS could sink the whole fleet

CSE 331 Spring 2020 8

Scale makes everything harder

Modularity makes scale possible but it’s still hard…
• Time to write N-line program grows faster than linear

– Good estimate is O(N1.05) [Boehm, ‘81]
• Bugs grow like Θ(N log N) [Jones, ‘12]

– 10% of errors are between modules [Seaman, ‘08]
• Communication costs dominate schedules [Brooks, ‘75]
• Small probability cases become high probability cases

– Corner cases are more important with more users

CSE 331 Spring 2020 9

Corollary: quality must be even higher, per line, in
order to achieve overall quality in a large program

People Do Build Great Software

Full scope of the challenge:
• software is built by people, who make mistakes all the time
• surprisingly difficult to get even a small program to work
• needed to write hundreds of millions of lines of code
• each line gets harder to write as the program scale

Despite those challenges, we have lots of software that works
• hundreds of millions of lines of working programs
• products rarely fail because the software is too buggy

How do we do it?

CSE 331 Spring 2020 10

How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and

one black shoe

Key insights:
– Can’t stop people from making mistakes
– Can stop mistakes from getting to users

How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– Type checkers, test runners, etc.

2. Inspection
– Think through your code carefully
– Have another person review your code

3. Testing
– Usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Spring 2020 12

How do we cope with complexity?

We tackle complexity with modularity
• Split code into pieces that can be built independently
• Each must be documented so others can use it
• Also helps understandability and changeability

CSE 331 Spring 2020 13

What is high quality code?

In summary, we want our code to be:

1. Correct
2. Easy to change
3. Easy to understand
4. Easy to scale (modular)

These qualities also allow for increased complexity

CSE 331 Spring 2020 14

What we will cover in CSE 331

• Everything we cover relates to the 4 goals
• We’ll use Java but the principles apply in any setting

CSE 331 Spring 2020 15

Correctness
1. Tools

• Git, IntelliJ, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• event-driven programming, MVC, GUIs

Changeability
• specifications, ADTs
• listeners & callbacks

Understandability
• specifications, ADTs
• Adv. Java: exceptions
• subtypes

Administrivia

Who: Course staff
• Instructor: Kevin Zatloukal (kevinz at cs)

– 15 years in industry, 5th year teaching

• ≈15 great TAs
– mix of veterans and new

• Office hours posted soon
– (starting later this week)

Get to know us!
– We’re here to help you succeed

17CSE 331 Spring 2020

Who: Students
• Assuming you have mastered CSE142 and CSE143

• Hoping (but not assuming) have you taken 311
– will connect to 311 material where it arises

• Assuming you are in your second year of CS courses
– seniors may be bored

18CSE 331 Spring 2020

Prerequisites
• Knowing Java is a prerequisite

Examples:
• Difference between int and Integer
• Distinction between == and equals()
• Aliasing: multiple references to the same object, what does

assignment (x=y;) really mean?
• Subtyping via extends (classes) and implements (interfaces)
• Method calls: inheritance and overriding; dynamic dispatch
• Difference between compile-time and run-time type

19CSE 331 Spring 2020

Unique Situation (for all of us)
• Much of the rest of this is subject to change

– but we are learning as we go

• Personal issues may arise
– let me know
– we will make accommodations as much as possible

20CSE 331 Spring 2020

Staying in touch

• Ed message board (link on course web page)
– should have received an invitation already
– best place to ask questions

• Course staff: cse331-staff@cs.washington.edu
– For things that don’t make sense to post on message board

• Course email list: cse331a_sp20@u.washington.edu
– Students already subscribed (your UW email address)
– You must get announcements sent there
– Fairly low traffic – one way (from staff to everyone)

21CSE 331 Spring 2020

Lectures

• Includes a pre-recorded video and a live session

• Each pre-recording posted 2 days before
– please watch that portion beforehand

• Each live session will each be a little different
– some lecture, Q&A, problems, work in small groups, etc.
– link to recording in Canvas
– slides posted on web site

22CSE 331 Spring 2020

Section

• Will be focused on helping with homework
– held on day HW is released
– get you get you started with the work to be done
– they should be very useful

• Live via Zoom video
– links on Canvas (see Zoom app)

• Aiming to have 10 sections with 16 students each
– will split time schedule sections into two parts
– details coming soon

23CSE 331 Spring 2020

Homework Assignments

• Roughly 1 assignment per week

• First 3 are paper assignments
– submit these in Gradescope
– should get an invite email before Tuesday

• let me know if you don’t

• Remaining 7 are coding assignments
– generally due on Wednesday by 11pm
– submit and tag your code in Gitlab

• TAs will grade and get feedback to you

24CSE 331 Spring 2020

Homework Assignments

• Biggest misconception (?) about CSE331
“Homework was programming projects that seemed

disconnected from lecture”

• If you think so, you are making them harder!
– approaching them as CSE143 homework won’t work well
– each HW designed to teach topics from prior lectures
– seek out the connections by before typing

• (Tip: this is also true of exams / quizzes)

25CSE 331 Spring 2020

Late Policy: Written Assignments

• Allowed only in special situations
– let us know 36 hours beforehand
– will also make exceptions for emergencies

CSE 331 Spring 2020 26

Late Policy: Coding Assignments

• Same special situations as written assignments

• And also:
– Up to 4 times this quarter you can turn in a homework

assignment one day late
– Not accepted for credit after that.
– Late days are 24-hour chunks

• Why?
– keep you on schedule (real world has deadlines)
– get feedback to you before next deadline

CSE 331 Spring 2020 27

Academic Integrity

• “The code you submit must be your own”
– no copying from other students, web pages, etc.

• Read the full course policy carefully
– ask questions if you are unsure

• Always explain in your HW any unconventional action
– worst result then is some points lost
– worst result otherwise is expulsion

• Violations are unfair to other students and yourself

28CSE 331 Spring 2020

Quizzes

• Will have ≈5 quizzes during the quarter
– 20-30 minutes each
– probably multiple choice / short answer questions
– may take place during the lecture period

• make sure that time slot is available
– details still TBD...

29CSE 331 Spring 2020

Books

Required book
• Effective Java 3rd ed, Bloch (EJ)

Optional book
• Pragmatic Programmer, new 20th anniversary

(2nd) edition, Hunt & Thomas (PP)

Other books
• Program Development in Java, Liskov & Guttag

– would be the textbook if not from 2001
• Core Java Vol I, Horstmann

– good reference on language & libraries

30CSE 331 Spring 2020

Books? In the 21st century?
• Why not just use Google, Stack Overflow, Reddit, Quora, …?
• Web-search good for

– Finding the parameters of a Java API function
• (can be) Bad for

– Why does it work this way?
– What is the intended use?
– How does my issue fit into the bigger picture?

• Beware:
– Answers on the web are often quickly out of date

• aim is to answer the question at the time when asked
– “This incantation solved my problem”

• give that to users without knowing how it works?

31CSE 331 Spring 2020

Readings

• Calendar will include book sections for you to read
– EJ = required, PP = optional

• These are “real” books about software, approachable in 331
– occasionally slight reach: accept the challenge

• Overlap only partially with lectures
– books include lots of other useful information

• Readings are fair game for quizzes
– want to make sure you do it

32CSE 331 Spring 2020

Exams

• No real exams

• Our final “exam”
– demo your final HW solution to a TA
– answer some questions about your experiences writing it

33CSE 331 Spring 2020

Grading

Approximate weighting (subject to change):

CSE 331 Spring 2019 34

65% Homework
25% Quizzes
10% Final “exam”

CSE 331 can be challenging

• Past experience tells us CSE 331 is hard
– not my intention to make it difficult!

• Big change to move

– from programming by trial & error
• technique that does not work for building large scale software

– to programming by careful design, reasoning, and testing

• Programming itself can be hard
– surprisingly difficult to specify, design, implement, test, debug,

and maintain even a simple program

35CSE 331 Spring 2019

CSE 331 can be challenging

• We strive to create assignments that are reasonable if you apply
the techniques taught in class…
… but likely hard to do in a trial & error manner

… and almost certainly impossible to finish if you
put them off until a few days before they’re due

• Assignments will take more time than you think (start early)
– even professionals routinely underestimate by 3x
– these assignments will be a step up in difficulty

• If you are having trouble, think before you act
– then, look for help

36CSE 331 Spring 2019

Other Advice

• Don’t be afraid to make mistakes
– accepting that you will make mistakes is perhaps the

most important lesson of this course
– we often learn best from our mistakes
– if you’re not making mistakes, you’re not challenging yourself

• Don’t expect everything to be spelled out for you
– real-world problems don’t come that way

• if there are detailed instructions for solving a problem,
then there should already be a program that does it

– world needs you for your intuition, creativity, & intelligence

37CSE 331 Spring 2019

Problems

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

39CSE 331 Spring 2020

Solution 1

int maxLoc(int[] arr, int n) {
int maxIndex = 0;
int maxValue = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > maxValue) {
maxIndex = i;
maxValue = arr[i];

}
}
return maxIndex;

}

40CSE 331 Spring 2020

Solution 2

int maxLoc(int[] arr, int n) {
int maxIndex = -1;
int maxValue = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
if (arr[i] > maxValue) {
maxIndex = i;
maxValue = arr[i];

}
}
return maxIndex;

}

41CSE 331 Spring 2020

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

What questions do you have about the specification?
– what if n = 0?
– what if n < 0?
– what if n > arr.length?
– what if there are two maximum elements?

42CSE 331 Spring 2020

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

Could we write a specification with only one correct solution?
– throw IllegalArgumentException if n <= 0
– throw ArrayOutOfBoundsException if n > arr.length
– return smallest index achieving maximum

43CSE 331 Spring 2020

Morals

• You can all write the code

• Writing the specification was harder than the code
– multiple choices for the “right” specification

• have to carefully think through corner cases
– once the specification is chosen, code is straightforward
– (both of those will be recurrent themes)

• Some math (e.g. “if n <= 0”) often shows up in specifications
– English (“if n is less or equal to than 0”) is often worse

44CSE 331 Spring 2020

An exercise before next class

• Do HW0 (90 minutes max) before lecture on Wednesday
– write an algorithm to rearrange array elements as described
– argue in concise, convincing English that it is correct

• don’t just explain what the code does!
– should run in O(n) time

• (optional challenge: can you do it in a single pass?)
– do not actually run your code!

• Start trying to reason about the code you write
– this may be difficult... if so, remember that!
– next, we will learn to use a set of tools that will make this easy

45CSE 331 Spring 2019

Before next class...

1. Familiarize yourself with website:

http://courses.cs.washington.edu/courses/cse331/20sp/

– read the syllabus
– read the academic integrity policy
– find the homework list
– find the link to Canvas

2. Do HW0 before lecture on Wednesday!
– limit this to 90 minutes
– submit a PDF on Gradescope (invite coming today)
– not graded

46CSE 331 Spring 2019

