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Motivation



What is the goal of CSE 331?

How to build harder-to-build software
• Move from CSE 143 problems toward what you’ll see

in upper-level courses and in industry

Specifically, how to write code of
• Higher quality
• Increased complexity

We will discuss tools and techniques to help with this and the 
concepts and ideas behind them

– There are timeless principles to both
– Widely used across the industry
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What is high quality?

Code is high quality when it is

1. Correct
– Everything else is of secondary importance

2. Easy to change
– Most work is making changes to existing systems

3. Easy to understand
– Needed for 1 & 2 above
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How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and 

one black shoe



What is increased complexity?

Analogy to building physical objects:
• 100 well-tested LOC = a nice cabinet
• 2,500 LOC = a room with furniture
• 2,500,000 LOC = 1000 rooms ≈
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North Carolina class WW2 battleship
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≈
the entire British Naval fleet in WW2



Actually, software is more complex…

• Every bit of code is unique, individually designed
–US built 10 identical Essex carriers

–Software equivalent would be one carrier 10 times as large:

• Defects can be even more destructive
– A defect in one room can sink the ship
– But a defective OS could sink the whole fleet
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Scale makes everything harder

Modularity makes scale possible but it’s still hard…
• Time to write N-line program grows faster than linear

– Good estimate is O(N1.05) [Boehm, ‘81]
• Bugs grow like Θ(N log N) [Jones, ‘12]

– 10% of errors are between modules [Seaman, ‘08]
• Communication costs dominate schedules [Brooks, ‘75]
• Small probability cases become high probability cases

– Corner cases are more important with more users
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Corollary: quality must be even higher, per line, in 
order to achieve overall quality in a large program



People Do Build Great Software

Full scope of the challenge:
• software is built by people, who make mistakes all the time
• surprisingly difficult to get even a small program to work
• needed to write hundreds of millions of lines of code
• each line gets harder to write as the program scale

Despite those challenges, we have lots of software that works
• hundreds of millions of lines of working programs
• products rarely fail because the software is too buggy

How do we do it?
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How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and 

one black shoe

Key insights:
– Can’t stop people from making mistakes
– Can stop mistakes from getting to users



How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– Type checkers, test runners, etc.

2. Inspection
– Think through your code carefully
– Have another person review your code

3. Testing
– Usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%
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How do we cope with complexity?

We tackle complexity with modularity
• Split code into pieces that can be built independently
• Each must be documented so others can use it
• Also helps understandability and changeability
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What is high quality code?

In summary, we want our code to be:

1. Correct
2. Easy to change
3. Easy to understand
4. Easy to scale (modular)

These qualities also allow for increased complexity
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What we will cover in CSE 331

• Everything we cover relates to the 4 goals
• We’ll use Java but the principles apply in any setting
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Correctness
1. Tools

• Git, IntelliJ, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• event-driven programming, MVC, GUIs

Changeability
• specifications, ADTs
• listeners & callbacks

Understandability
• specifications, ADTs
• Adv. Java: exceptions
• subtypes



Administrivia



Who: Course staff
• Instructor:  Kevin Zatloukal  (kevinz at cs)

– 15 years in industry, 5th year teaching

• ≈15 great TAs 
– mix of veterans and new

• Office hours posted soon
– (starting later this week)

Get to know us!
– We’re here to help you succeed
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Who: Students
• Assuming you have mastered CSE142 and CSE143

• Hoping (but not assuming) have you taken 311
– will connect to 311 material where it arises

• Assuming you are in your second year of CS courses
– seniors may be bored
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Prerequisites
• Knowing Java is a prerequisite

Examples:
• Difference between int and Integer
• Distinction between == and equals()
• Aliasing: multiple references to the same object, what does 

assignment (x=y;) really mean?
• Subtyping via extends (classes) and implements (interfaces)
• Method calls: inheritance and overriding; dynamic dispatch
• Difference between compile-time and run-time type
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Unique Situation (for all of us)
• Much of the rest of this is subject to change

– but we are learning as we go

• Personal issues may arise
– let me know
– we will make accommodations as much as possible
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Staying in touch

• Ed message board (link on course web page)
– should have received an invitation already
– best place to ask questions

• Course staff: cse331-staff@cs.washington.edu 
– For things that don’t make sense to post on message board

• Course email list: cse331a_sp20@u.washington.edu
– Students already subscribed (your UW email address)
– You must get announcements sent there
– Fairly low traffic – one way (from staff to everyone)
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Lectures

• Includes a pre-recorded video and a live session

• Each pre-recording posted 2 days before
– please watch that portion beforehand

• Each live session will each be a little different
– some lecture, Q&A, problems, work in small groups, etc.
– link to recording in Canvas
– slides posted on web site
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Section

• Will be focused on helping with homework
– held on day HW is released
– get you get you started with the work to be done
– they should be very useful

• Live via Zoom video
– links on Canvas (see Zoom app)

• Aiming to have 10 sections with 16 students each
– will split time schedule sections into two parts
– details coming soon
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Homework Assignments

• Roughly 1 assignment per week

• First 3 are paper assignments
– submit these in Gradescope
– should get an invite email before Tuesday

• let me know if you don’t

• Remaining 7 are coding assignments
– generally due on Wednesday by 11pm
– submit and tag your code in Gitlab

• TAs will grade and get feedback to you
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Homework Assignments

• Biggest misconception (?) about CSE331
“Homework was programming projects that seemed 

disconnected from lecture”

• If you think so, you are making them harder!
– approaching them as CSE143 homework won’t work well 
– each HW designed to teach topics from prior lectures
– seek out the connections by before typing

• (Tip: this is also true of exams / quizzes)
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Late Policy: Written Assignments

• Allowed only in special situations
– let us know 36 hours beforehand
– will also make exceptions for emergencies

CSE 331 Spring 2020 26



Late Policy: Coding Assignments

• Same special situations as written assignments

• And also:
– Up to 4 times this quarter you can turn in a homework 

assignment one day late
– Not accepted for credit after that.
– Late days are 24-hour chunks

• Why?
– keep you on schedule (real world has deadlines)
– get feedback to you before next deadline
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Academic Integrity

• “The code you submit must be your own”
– no copying from other students, web pages, etc.

• Read the full course policy carefully
– ask questions if you are unsure

• Always explain in your HW any unconventional action
– worst result then is some points lost
– worst result otherwise is expulsion

• Violations are unfair to other students and yourself
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Quizzes

• Will have ≈5 quizzes during the quarter
– 20-30 minutes each
– probably multiple choice / short answer questions
– may take place during the lecture period

• make sure that time slot is available
– details still TBD...
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Books

Required book
• Effective Java 3rd ed, Bloch (EJ)

Optional book
• Pragmatic Programmer, new 20th anniversary

(2nd) edition, Hunt & Thomas (PP)

Other books
• Program Development in Java, Liskov & Guttag

– would be the textbook if not from 2001
• Core Java Vol I, Horstmann

– good reference on language & libraries
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Books? In the 21st century?
• Why not just use Google, Stack Overflow, Reddit, Quora, …?
• Web-search good for

– Finding the parameters of a Java API function
• (can be) Bad for

– Why does it work this way?
– What is the intended use?
– How does my issue fit into the bigger picture?

• Beware:
– Answers on the web are often quickly out of date

• aim is to answer the question at the time when asked
– “This incantation solved my problem”

• give that to users without knowing how it works?
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Readings

• Calendar will include book sections for you to read
– EJ = required, PP = optional

• These are “real” books about software, approachable in 331 
– occasionally slight reach: accept the challenge

• Overlap only partially with lectures
– books include lots of other useful information

• Readings are fair game for quizzes
– want to make sure you do it
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Exams

• No real exams

• Our final “exam”
– demo your final HW solution to a TA
– answer some questions about your experiences writing it
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Grading

Approximate weighting (subject to change):
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65% Homework
25% Quizzes
10% Final “exam”



CSE 331 can be challenging

• Past experience tells us CSE 331 is hard
– not my intention to make it difficult!

• Big change to move

– from programming by trial & error
• technique that does not work for building large scale software

– to programming by careful design, reasoning, and testing

• Programming itself can be hard
– surprisingly difficult to specify, design, implement, test, debug, 

and maintain even a simple program
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CSE 331 can be challenging

• We strive to create assignments that are reasonable if you apply 
the techniques taught in class…
… but likely hard to do in a trial & error manner

… and almost certainly impossible to finish if you
put them off until a few days before they’re due

• Assignments will take more time than you think (start early)
– even professionals routinely underestimate by 3x
– these assignments will be a step up in difficulty

• If you are having trouble, think before you act
– then, look for help
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Other Advice

• Don’t be afraid to make mistakes
– accepting that you will make mistakes is perhaps the

most important lesson of this course
– we often learn best from our mistakes
– if you’re not making mistakes, you’re not challenging yourself

• Don’t expect everything to be spelled out for you
– real-world problems don’t come that way

• if there are detailed instructions for solving a problem,
then there should already be a program that does it

– world needs you for your intuition, creativity, & intelligence
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Problems



A Problem

“Complete this method such that it returns the location of the largest 
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}
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Solution 1

int maxLoc(int[] arr, int n) {
int maxIndex = 0;
int maxValue = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > maxValue) {
maxIndex = i;
maxValue = arr[i];

}
}
return maxIndex;

}
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Solution 2

int maxLoc(int[] arr, int n) {
int maxIndex = -1;
int maxValue = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
if (arr[i] > maxValue) {
maxIndex = i;
maxValue = arr[i];

}
}
return maxIndex;

}
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A Problem

“Complete this method such that it returns the location of the largest 
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

What questions do you have about the specification?
– what if n = 0?
– what if n < 0? 
– what if n > arr.length?
– what if there are two maximum elements?
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A Problem

“Complete this method such that it returns the location of the largest 
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

Could we write a specification with only one correct solution?
– throw IllegalArgumentException if n <= 0
– throw ArrayOutOfBoundsException if n > arr.length
– return smallest index achieving maximum
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Morals

• You can all write the code

• Writing the specification was harder than the code
– multiple choices for the “right” specification

• have to carefully think through corner cases
– once the specification is chosen, code is straightforward
– (both of those will be recurrent themes)

• Some math (e.g. “if n <= 0”) often shows up in specifications
– English (“if n is less or equal to than 0”) is often worse
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An exercise before next class

• Do HW0 (90 minutes max) before lecture on Wednesday
– write an algorithm to rearrange array elements as described
– argue in concise, convincing English that it is correct

• don’t just explain what the code does!
– should run in O(n) time

• (optional challenge: can you do it in a single pass?)
– do not actually run your code!

• Start trying to reason about the code you write
– this may be difficult... if so, remember that!
– next, we will learn to use a set of tools that will make this easy
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Before next class...

1. Familiarize yourself with website:

http://courses.cs.washington.edu/courses/cse331/20sp/ 

– read the syllabus
– read the academic integrity policy
– find the homework list
– find the link to Canvas

2. Do HW0 before lecture on Wednesday!
– limit this to 90 minutes
– submit a PDF on Gradescope (invite coming today)
– not graded
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