
CSE 331
Software Design & Implementation

Fall 2020
Section 5 – HW5 implementation, Review

UW CSE 331 Fall 2020 1

Administrivia

• Done with HW5 part 1
– hw5-part1-final tag
– Do not include any ADT implementation in this commit/tag

• HW5 part 2 (ADT implementation) due next week
– Reminder (1): No generics for now!
– Reminder (2): Be sure to add/commit/push new files in git
– Reminder (3): Remember to commit and push your code often,

even if your assignment isn’t finished yet!

UW CSE 331 Fall 2020 2

Agenda

• Review of representation exposure

• Walk-through of the test-script driver (to run .test files)

• Managing an expensive checkRep

• Review of equals and hashCode

• Brief mid-point summary/review

UW CSE 331 Fall 2020 3

Rep-Exposure Exercise

UW CSE 331 Fall 2020 4

ps

e1

e2

e3

main

…
x 1
y 2

elts

Rep-Exposure Exercise (Solution)

UW CSE 331 Fall 2020 5

ps

e1

e2

e3

main

…
x 1
y 2

x 17
y 42

elts

…

How the script tests work

• In HW5 part 1, you wrote script tests in the form of .test files
– As well as an .expected file for each test’s expected outcome

• The JUnit class ScriptFileTests runs all these tests
– Looks for all the .test files in the
src/test/resources/testScripts folder

– Compares test output against corresponding .expected file

• ScriptFileTests needs a bridge to your graph implementation
– That’s exactly what the GraphTestDriver class is for

UW CSE 331 Fall 2020 9

Driver for test scripts

• GraphTestDriver knows how to read these test scripts

• GraphTestDriver calls a method to “do” each verb
– CreateGraph, AddNode, AddEdge …
– One method stub per script command for you to fill with calls to

your graph code

• Note: Completed test driver should sort lists before printing
– Just to ensure predictable, deterministic output
– Your graph implementation itself should not worry about sorting

UW CSE 331 Fall 2020 10

Demo

Here’s a quick tour of the GraphTestDriver!

UW CSE 331 Fall 2020 11

Sorting with the driver

• Use the test driver appropriately!
– From last slide: “Completed test driver should sort lists

before printing.”

• Script test output for hw5 needs to be sorted so we can
mechanically check it.

• This means sorted output for tests does NOT mean sorted
internal storage in graph.
– If sorting behavior is needed, Graph ADT clients (including

the test driver) can sort those labels.

UW CSE 331 Fall 2020 12

In other words…

The Graph ADT in general should NOT assume that
node or edge labels are sorted.

UW CSE 331 Fall 2020 13

Expensive checkReps

• A complicated rep. invariant can be expensive to check
– Especially iterating over internal collection(s)
– For example, examining every edge in a graph

• A slow checkRep could cause our grading scripts to time-out
– Can be really useful during testing/deugging, but
– Need to disable the really slow checks before submitting

• We have a tension between two goals:
– Thorough, possibly slow checking for development
– Essential, necessarily fast checking for production/grading

• What to do?

UW CSE 331 Fall 2020 14

Use a debug flag to tune checkRep

• Repeatedly (un)commenting sections of code is a poor solution

• Instead, use a class-level constant as a toggle
– Ex.: private static final boolean DEBUG = …;

• false for only the fast, essential checks
• true for all the slow, thorough checks

– Real-world code often has several such “debug levels”

UW CSE 331 Fall 2020 15

private void checkRep() {
assert fast_checks();
if (DEBUG)

assert slow_checks();
}

The equals method (review)

• Specification mandates several properties:
– Reflexive: x.equals(x) is true
– Symmetric: x.equals(y)Û y.equals(x)
– Transitive: x.equals(y) Ù y.equals(z)Þ x.equals(z)
– Consistent: x.equals(y) shouldn’t change, unless perhaps x or y did
– Null uniqueness: x.equals(null) is false

• Several notions of equality:
– Referential: literally the same object in memory
– Behavioral: no sequence of operations could tell apart
– Observational: no sequence of observer operations could tell apart

UW CSE 331 Fall 2020 16

The hashCode method (new)

• Specification mandates several properties:
– Self-consistent: x.hashCode() shouldn’t change, unless x did
– Equality-consistent: x.equals(y)Þ x.hashCode() == y.hashCode()

• Equal objects must have the same hash code.
– Implementations of equals and hashCode work together for this
– If you override equals, you must override hashCode as well

UW CSE 331 Fall 2020 17

Overriding equals and hashCode

• A subclass method overrides a superclass method, when…
– They have the exact same name
– They have the exact same argument types

• An overriding method should satisfy the overridden method’s spec.

• Always use @override tag when overriding equals and
hashCode (or any other overridden method)

• Note: Method overloading is not the same as overriding
– Same name but distinguished by different argument types

• Keep these details in mind if you override equals and hashCode.
UW CSE 331 Fall 2020 18

Your turn!

Spend a few minutes on the worksheet problems, then
we’ll go over answers.

UW CSE 331 Fall 2020 19

Topics covered so far

• Reasoning about code:
Hoare logic, forward/backward reasoning, loop invariants, …

• Specification:
JavaDoc, stronger v. weaker, satisfaction, substitutability, …

• Data abstraction:
ADT spec./impl., abstraction functions, rep. invariants, …
– Including checkRep as covered in lecture/section

• Testing:
unit v. system, black-box v. clear-box, spec. v. impl., …

• Modularity:
(de)composition, cohesion, coupling, open-closed principle, …

• Object identity:
equivalence relation, equals, hashCode, …

UW CSE 331 Fall 2020 26

