
CSE 331
Software Design & Implementation

Fall 2020
Section 5 – HW5 implementation, Review
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Administrivia

• Done with HW5 part 1
– hw5-part1-final tag
– Do not include any ADT implementation in this commit/tag

• HW5 part 2 (ADT implementation) due next week
– Reminder (1): No generics for now!
– Reminder (2): Be sure to add/commit/push new files in git
– Reminder (3): Remember to commit and push your code often, 

even if your assignment isn’t finished yet!
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Agenda

• Review of representation exposure

• Walk-through of the test-script driver (to run .test files)

• Managing an expensive checkRep

• Review of equals and hashCode

• Brief mid-point summary/review
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Rep-Exposure Exercise
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Rep-Exposure Exercise (Solution)

UW CSE 331 Fall 2020 5

ps

e1

e2

e3

main

…
x   1 
y   2 

x   17
y   42

elts

…



How the script tests work

• In HW5 part 1, you wrote script tests in the form of .test files
– As well as an .expected file for each test’s expected outcome

• The JUnit class ScriptFileTests runs all these tests
– Looks for all the .test files in the 
src/test/resources/testScripts folder

– Compares test output against corresponding .expected file

• ScriptFileTests needs a bridge to your graph implementation
– That’s exactly what the GraphTestDriver class is for
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Driver for test scripts

• GraphTestDriver knows how to read these test scripts

• GraphTestDriver calls a method to “do” each verb
– CreateGraph, AddNode, AddEdge …
– One method stub per script command for you to fill with calls to 

your graph code

• Note: Completed test driver should sort lists before printing
– Just to ensure predictable, deterministic output
– Your graph implementation itself should not worry about sorting
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Demo

Here’s a quick tour of the GraphTestDriver!
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Sorting with the driver

• Use the test driver appropriately!
– From last slide: “Completed test driver should sort lists 

before printing.”

• Script test output for hw5 needs to be sorted so we can 
mechanically check it.

• This means sorted output for tests does NOT mean sorted 
internal storage in graph.
– If sorting behavior is needed, Graph ADT clients (including 

the test driver) can sort those labels.
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In other words…

The Graph ADT in general should NOT assume that 
node or edge labels are sorted.
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Expensive checkReps

• A complicated rep. invariant can be expensive to check
– Especially iterating over internal collection(s)
– For example, examining every edge in a graph

• A slow checkRep could cause our grading scripts to time-out
– Can be really useful during testing/deugging, but
– Need to disable the really slow checks before submitting

• We have a tension between two goals:
– Thorough, possibly slow checking for development
– Essential, necessarily fast checking for production/grading

• What to do?
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Use a debug flag to tune checkRep

• Repeatedly (un)commenting sections of code is a poor solution

• Instead, use a class-level constant as a toggle
– Ex.: private static final boolean DEBUG = …;

• false for only the fast, essential checks
• true for all the slow, thorough checks

– Real-world code often has several such “debug levels”
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private void checkRep() {
assert fast_checks();
if (DEBUG)

assert slow_checks();
} 



The equals method (review)

• Specification mandates several properties:
– Reflexive: x.equals(x) is true
– Symmetric: x.equals(y)Û y.equals(x)
– Transitive: x.equals(y) Ù y.equals(z)Þ x.equals(z)
– Consistent: x.equals(y) shouldn’t change, unless perhaps x or y did
– Null uniqueness: x.equals(null) is false

• Several notions of equality:
– Referential: literally the same object in memory
– Behavioral: no sequence of operations could tell apart
– Observational: no sequence of observer operations could tell apart
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The hashCode method (new)

• Specification mandates several properties:
– Self-consistent: x.hashCode() shouldn’t change, unless x did
– Equality-consistent: x.equals(y)Þ x.hashCode() == y.hashCode()

• Equal objects must have the same hash code.
– Implementations of equals and hashCode work together for this
– If you override equals, you must override hashCode as well
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Overriding equals and hashCode

• A subclass method overrides a superclass method, when…
– They have the exact same name
– They have the exact same argument types

• An overriding method should satisfy the overridden method’s spec.

• Always use @override tag when overriding equals and 
hashCode (or any other overridden method)

• Note: Method overloading is not the same as overriding
– Same name but distinguished by different argument types

• Keep these details in mind if you override equals and hashCode.
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Your turn!

Spend a few minutes on the worksheet problems, then 
we’ll go over answers.
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Topics covered so far

• Reasoning about code:
Hoare logic, forward/backward reasoning, loop invariants, …

• Specification:
JavaDoc, stronger v. weaker, satisfaction, substitutability, …

• Data abstraction:
ADT spec./impl., abstraction functions, rep. invariants, …
– Including checkRep as covered in lecture/section

• Testing:
unit v. system, black-box v. clear-box, spec. v. impl., …

• Modularity:
(de)composition, cohesion, coupling, open-closed principle, …

• Object identity:
equivalence relation, equals, hashCode, …
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