
CSE 331
Software Design & Implementation

Fall 2020
Section 2 – Code Reasoning

CSE 331 Fall 2020 1

Administrivia

• HW1 due tonight.

• Any questions before we dive in?
– What are the most interesting/confusing/puzzling things so far in

the course?

CSE 331 Fall 2020 2

Agenda

• Review logical reasoning about code with Hoare Logic

• Practice both forward and backward modes
– Just assignment, conditional (“if-then-else”), and sequence
– Logical rules from yesterday’s lecture/notes

• Review logical strength of assertions (weaker vs. stronger)

• Practice determining stronger/weaker assertions

• Practice checking correctness of loops.

• Practice writing loops (if time allows)
CSE 331 Fall 2020 3

Why reason about code?

• Prove that code is correct

• Understand why code is correct

• Diagnose why/how code is not correct

• Specify code behavior

CSE 331 Fall 2020 4

Logical reasoning about code

• Determine facts that hold of program state between statements
– “Fact” ~ assertion (logical formula over program state,

informally “value(s) of some/all program variables)
– Driven by assumption (precondition) or goal (postconditon)

• Forward reasoning
– What facts follow from initial assumptions?
– Go from precondition to postcondition

• Backward reasoning
– What facts need to be true to reach a goal?
– Go from postcondition to precondition

CSE 331 Fall 2020 5

Hoare Logic: Validity by Reasoning

• Checking validity of {P} S {Q}
– Valid iff, starting from any state satisfying P, executing S

results in a state satisfying Q

• Forward reasoning:
– Reason from P to strongest postcondition {P} S {R}
– Check that R implies Q (i.e., Q is weaker)

• Backward reasoning:
– Reason from Q to get weakest precondition {R} S {Q}
– Check that P implies R (i.e., P is stronger)

CSE 331 Fall 2020 6

Implication (=>)

• Logic formulas with and (&, &&, or ∧), or (|, ||, or ∨) and not
(! or ¬) have the same meaning they do in programs

• Implication might be a bit new, but the basic idea is pretty
simple. Implication p=>q is true as long as q is always true
whenever p is

CSE 331 Fall 2020 7

p q p => q
T T T
T F F
F T T
F F T

Assignment Statements

• Reasoning about x = y;

• Forward reasoning:
– add “x = y” as a new fact
– (also rewrite any existing references to “x” to use new value)

• Backward reasoning:
– replace all instances of “x” in the postcondition with “y”

CSE 331 Fall 2020 8

Conditionals, more closely

CSE 331 Fall 2020

Forward reasoning

{P}
if (b)

{P ∧ b}
S1
{Q1}

else
{P ∧ !b}
S2
{Q2}

{Q1 ∨ Q2}

Backward reasoning

{ (b ∧ P1) ∨ (!b ∧ P2) }
if (b)
{P1}
S1
{Q}

else
{P2}
S2
{Q}

{Q}

9

Weaker vs. stronger

Formal definition:
• If P ⇒ Q, then

– Q is weaker than P
– P is stronger than Q

Intuitive definition:
• “Weak” means unrestrictive; a weaker assertion has a larger set

of possible program states (e.g., x != 0)
• “Strong” means restrictive; a stronger assertion has a smaller set

of possible program states (e.g., x = 1 or x > 0 are both
stronger than x != 0).

CSE 331 Fall 2020 10

P Q

Worksheet

• Take ~10 minutes to get where you can

• Find a partner and work with them

• Let me know if you feel stuck

• We’ll walk through some solutions afterwards

CSE 331 Fall 2020 11

Worksheet – problem 2

{ true }
if (x>0) {
{ x > 0 }
y = 2*x;
{ x > 0 ∧ y = 2x }

} else {
{ x <= 0 }
y = -2*x;
{ x <= 0 ∧ y = -2x }

}
{ (x > 0 ∧ y = 2x) ∨ (x <= 0 ∧ y = -2x) }
⇒ { y = 2|x| }

CSE 331 Fall 2020 12

Worksheet – problem 4

{ y > 15 ∨ (y <= 5 ∧ y + z > 17) }
if (y > 5) {
{ y > 15 }
x = y + 2
{ x > 17 }

} else {
{ y + z > 17 }
x = y + z;
{ x > 17 }

}
{ x > 17 }

CSE 331 Fall 2020 13

Worksheet – problem 6 (forward)

{ true }
if (x < y) {
{ true ∧ x < y }
m = x;
{ x < y ∧ m = x }

} else {
{ true ∧ x >= y }
m = y;
{ x >= y ∧ m = y }

}
{ (x < y ∧ m = x) ∨ (x >= y ∧ m = y) }
⇒ { m = min(x, y) }

CSE 331 Fall 2020 14

Worksheet – problem 6 (backward)

{ true } ⇔
{ (x <= y ∧ x < y) ∨ (y <= x ∧ x >= y) }
if (x < y) {
{ x = min(x, y) } ⇔ { x <= y }
m = x;
{ m = min(x, y) }

} else {
{ y = min(x, y) } ⇔ { x >= y }
m = y;
{ m = min(x, y) }

}
{ m = min(x, y) }

CSE 331 Fall 2020 15

Worksheet – problem 7

{ y > 23 } { y >= 23 }

{ y = 23 } { y >= 23 }

{ y < 0.23 } { y < 0.00023 }

{ x = y * z } { y = x / z }

{ is_prime(y) } { is_odd(y) }

CSE 331 Fall 2020 16

Worksheet – problem 7

{ y > 23 } is stronger than { y >= 23 }

{ y = 23 } { y >= 23 }

{ y < 0.23 } { y < 0.00023 }

{ x = y * z } { y = x / z }

{ is_prime(y) } { is_odd(y) }

CSE 331 Fall 2020 17

Worksheet – problem 7

{ y > 23 } is stronger than { y >= 23 }

{ y = 23 } is stronger than { y >= 23 }

{ y < 0.23 } { y < 0.00023 }

{ x = y * z } { y = x / z }

{ is_prime(y) } { is_odd(y) }

CSE 331 Fall 2020 18

Worksheet – problem 7

{ y > 23 } is stronger than { y >= 23 }

{ y = 23 } is stronger than { y >= 23 }

{ y < 0.23 } is weaker than { y < 0.00023 }

{ x = y * z } { y = x / z }

{ is_prime(y) } { is_odd(y) }

CSE 331 Fall 2020 19

Worksheet – problem 7

{ y > 23 } is stronger than { y >= 23 }

{ y = 23 } is stronger than { y >= 23 }

{ y < 0.23 } is weaker than { y < 0.00023 }

{ x = y * z } is incomparable with { y = x / z }

{ is_prime(y) } { is_odd(y) }

CSE 331 Fall 2020 20

Worksheet – problem 7

{ y > 23 } is stronger than { y >= 23 }

{ y = 23 } is stronger than { y >= 23 }

{ y < 0.23 } is weaker than { y < 0.00023 }

{ x = y * z } is incomparable with { y = x / z }

{ is_prime(y) } is incomparable with { is_odd(y) }

CSE 331 Fall 2020 21

Questions?

• What is the most surprising thing about this?

• What is the most confusing thing?

• What will need a bit more thinking to digest?

CSE 331 Fall 2020 22

Previously on CSE 331...

{{ P }} while (cond) S {{ Q }}

This triple is valid iff

CSE 331 Fall 2020 23

{{ P }}
{{ Inv: I }}
while (cond)
S

{{ Q }}

• I holds initially
• I holds each time we execute S
• Q holds when I holds and cond is false

QIP

Worksheet – problem 8

Need to check each of these parts:
• code before the loop
• body of the loop
• exit of the loop gives claimed assert
• postcondition holds when returning true
• postcondition holds when returning false

We’ll go through these in that order…

CSE 331 Fall 2020 24

Worksheet – problem 8

{{ Precondition: x >= 1 }}

int k = 0;
int y = 1;

{{ Inv: y = 2k and y/2 < x }}

CSE 331 Fall 2020 25

{{ k = 0 and y = 1 }}

When k = 0, we have y = 2k = 20 = 1, which is true.

We also have y/2 = 1/2 < 1 <= x, so that part is
also true

Worksheet – problem 8

{{ Inv: y = 2k and y/2 < x }}
while (y < x) {
y = y * 2;
k = k + 1;

}

CSE 331 Fall 2020 26

{{ 2y = 2k+1 and 2y/2 < x }} or equiv {{ y = 2k and y < x }}

{{ y = 2k and y/2 < x }}
{{ y = 2k+1 and y/2 < x }}

Inv and loop condition (y < x) include both of the
two facts we need for correctness.

Worksheet – problem 8

{{ Inv: y = 2k and y/2 < x }}
while (y < x) {
y = y * 2;
k = k + 1;

}

{{ y = 2k and y/2 < x <= y }}

CSE 331 Fall 2020 27

Last fact is y >= x,
so we have y/2 < x <= y as required.

{{y = 2k and y/2 < x and not (y < x) }}

Worksheet – problem 8

{{ y = 2k and y/2 < x <= y }}

if (y == x) {

{{ Postcondition: x is a power of 2 }}
return true;

} else {
…
}

CSE 331 Fall 2020 28

{{ y = 2k and y = x }}

y is a power of 2 and y = x,
so x is a power of 2

Worksheet – problem 8

{{ y = 2k and y/2 < x <= y }}

if (y == x) {
…

} else {

{{ Postcondition: x is not a power of 2 }}
return false;

}

CSE 331 Fall 2020 29

{{ y = 2k and y/2 < x <= y and y != x }}

y != x tells us we have y/2 < x < y

So x lies strictly between two subsequent powers
of 2, which means it is not a power of 2.

• Loop invariant comes out of the algorithm idea
– describes partial progress toward the goal
– how you will get from start to end

• Essence of the algorithm idea is:
– invariant
– how you make progress on each step (e.g., i = i + 1)

• Code is ideally just details that follow from that idea...

Loop Invariants

CSE 331 Spring 2020 30

Loop Invariant ➜ Code

In fact, can usually deduce the code from the invariant:

• When does loop invariant satisfy the postcondition?
– gives you the termination condition

• What is the easiest way to satisfy the loop invariant?
– gives you the initialization code

• How does the invariant change as you make progress?
– gives you the rest of the loop body

CSE 331 Spring 2020 31

QIP1P

Another Example

Example: quotient and remainder

Problem: Set q to be the quotient of x/y and r to be the remainder

Precondition: x >= 0 and y > 0
Postcondition: q*y + r = x and 0 <= r < y

– i.e., y doesn’t go into x any more times

CSE 331 Spring 2020 33

Example: quotient and remainder

Problem: Set q to be the quotient of x/y and r to be the remainder

Precondition: x >= 0 and y > 0
Postcondition: q*y + r = x and 0 <= r < y

– i.e., y doesn’t go into x any more times

Loop invariant: q*y + r = x and 0 <= r
– postcondition is special case when we also have r < y
– this suggests a loop condition…

CSE 331 Spring 2020 34

This is (again) just a weakening
of the postcondition.
(We just drop r < y.)

Example: quotient and remainder

We want “r < y” when the conditions fails
– so the condition is r >= y
– can see immediately that the postcondition holds on loop exit

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 35

Example: quotient and remainder

Need to make the invariant hold initially…
– search for an easy way to satisfy q*y + r = x and 0 <= r

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 36

Example: quotient and remainder

Need to make the invariant hold initially…
– search for an easy way to satisfy q*y + r = x and 0 <= r
– how about q = 0?

- then we need r = x... and that is okay since 0 <= x

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 37

Example: quotient and remainder

Need to make the invariant hold initially…
– search for the simplest way that works

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 38

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

r = r – y;
}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 39

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

r = r – y;
}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 40

{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

{{ q*y + r = x and 0 <= r and y <= r }}

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

r = r – y;
}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 41

{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

{{ q*y + r = x and 0 <= r and y <= r }}
{{ q*y+y + r-y = x and 0 <= r and y <= r }}

add and subtract y

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {

r = r – y;
}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 42

{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

{{ q*y + r = x and 0 <= r and y <= r }}
{{ q*y+y + r-y = x and 0 <= r and y <= r }}

{{ (q+1)*y + r-y = x and 0 <= r and y <= r }}

top has q+1 where bottom has q, so
we need code that changes q to q+1

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
q = q + 1;
r = r – y;

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 43

let’s double-check this, just to be sure…

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate…

– if r >= y, then y goes into x at least one more time

int q = 0;
int r = x;

{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
q = q + 1;
r = r – y;

}

{{ q*y + r = x and 0 <= r < y }}

CSE 331 Spring 2020 44

{{ (q+1)*y + r-y = x and y <= r }}
{{ q*y + r-y = x and 0 <= r-y }}
{{ q*y + r = x and 0 <= r }}

+y and -y cancel to give exactly Inv

Aside on Efficiency

• This is not an efficient agorithm
– runs in O(x/y) time, which could be huge (e.g. x/y = 263)
– but it is correct

• Grade school “long division“ is much more efficient
– runs in O((log x)2) time
– makes progress in larger steps

• (needs a more complex invariant)

CSE 331 Spring 2020 45

