CSE 331
Software Design & Implementation

Fall 2020
Section 2 — Code Reasoning

CSE 331 Fall 2020

Administrivia

 HWH1 due tonight.

* Any questions before we dive in?

— What are the most interesting/confusing/puzzling things so far in
the course?

CSE 331 Fall 2020 2

Agenda

Review logical reasoning about code with Hoare Logic
Practice both forward and backward modes

— Just assignment, conditional (“if-then-else”), and sequence
— Logical rules from yesterday’s lecture/notes

Review logical strength of assertions (weaker vs. stronger)
Practice determining stronger/weaker assertions

Practice checking correctness of loops.

Practice writing loops (if time allows)
CSE 331 Fall 2020

Why reason about code?

Prove that code is correct

Understand why code is correct

Diagnose why/how code is not correct

Specify code behavior

CSE 331 Fall 2020

Logical reasoning about code

« Determine facts that hold of program state between statements

— “Fact” ~ assertion (logical formula over program state,
informally “value(s) of some/all program variables)

— Driven by assumption (precondition) or goal (postconditon)

« Forward reasoning
— What facts follow from initial assumptions?
— Go from precondition to postcondition

« Backward reasoning
— What facts need to be true to reach a goal?
— Go from postcondition to precondition

CSE 331 Fall 2020

Hoare Logic: Validity by Reasoning

« Checking validity of {P} S {Q}
— Valid iff, starting from any state satisfying P, executing S
results in a state satisfying Q

* Forward reasoning:
— Reason from P to strongest postcondition {P} S {R}

— Check that Rimplies Q(i.e., Qis weaker)

« Backward reasoning:
— Reason from Q to get weakest precondition {R} S {Q}

— Check that P implies R (i.e., P is stronger)

CSE 331 Fall 2020

Implication (=>)

« Logic formulas with and (&, &&, or A), or (|, ||, or v) and not
(! or 7) have the same meaning they do in programs

* Implication might be a bit new, but the basic idea is pretty
simple. Implication p=>q is true as long as q is always true
whenever p is

T T T
T F F
F T T
F F T

CSE 331 Fall 2020

Assignment Statements

« Reasoning aboutx = y;

* Forward reasoning:
— add “x =y” as a new fact
— (also rewrite any existing references to “x” to use new value)

« Backward reasoning:
— replace all instances of “x” in the postcondition with “y”

CSE 331 Fall 2020 8

Conditionals, more closely

Forward reasoning Backward reasoning
{P} {AP)V('bAP,)}
if (b) if (b)

{P ADb} {P.}

S, S,

{Q:} {0}
else else

{PA!b} {P,}

S, S,

{Q:} {0}
{0V Q} {Q}

CSE 331 Fall 2020

Weaker vs. stronger

Formal definition:
e |[fP= Q, then
— Qis weaker than P o,

— Pis stronger than Q

Intuitive definition:

« “Weak” means unrestrictive; a weaker assertion has a larger set
of possible program states (e.g., x '= 0)

« “Strong” means restrictive; a stronger assertion has a smaller set
of possible program states (e.g., x = 1 or x > 0 are both
stronger than x '= 0).

CSE 331 Fall 2020 10

Worksheet

Take ~10 minutes to get where you can

Find a partner and work with them

Let me know if you feel stuck

We'll walk through some solutions afterwards

CSE 331 Fall 2020

11

Worksheet — problem 2

{ true }
if (x>0) {

{ x> 0}

y = 2*x;

{ x>0 Ay =2x }
} else {

{ x <=0 }

y = —-2*x;

{ x<=0Ay = -2x }
}
{ x>0Ay=2x) V (x<=0Ay=-2x) }
= {y=2|x| }

CSE 331 Fall 2020

Worksheet — problem 4

{y>15V (y<=5Ay + 2z >17) }
if (y > 5) {

{y>15}
X =y + 2
{ x > 17 }
} else {
{y+ 2z >17 }
X =y + z;
{ x> 17 }

{ x> 17 }

CSE 331 Fall 2020

Worksheet — problem 6 (forward)

{ true }
if (x < y) {
{ true A x < y }
m = x;
{ x <y Am=x}
} else {
{ true A x >= vy }
m=y;
{x>yAm=y}
}
{ x <y Am=x)V (x> y Am=y) }
= {m =min(x, y) }

CSE 331 Fall 2020

14

Worksheet — problem 6 (backward)

{ true } &
{ x <=y Ax<y)V (y<=xAx>vy) }
if (x < y) {
{ x =min(x, v) } & { x <=y }
m = Xx;
{ m=min(x, y) }
} else {
{y=min(x, y) } @ { x>y}
m=y;

{m=min(x, y) }

=)
I

min(x, y) }

CSE 331 Fall 2020

Worksheet — problem 7

{y>23}

{y=231}

{ vy <0.23}

{(x=y*z)

{ is prime(y) }

CSE 331 Fall 2020

{y> 23}

{ y >= 23)

{ y < 0.00023 }

{y=x/ 2z}

{ is odd(y) }

16

Worksheet — problem 7

{ v > 23 } Is stronger than

{y=231}

{ vy <0.23}

{(x=y*z)

{ is prime(y) }

CSE 331 Fall 2020

{y> 23}

{ y >= 23)

{ y < 0.00023 }

{y=x/ 2z}

{ is odd(y) }

17

Worksheet — problem 7

{ v > 23 } Is stronger than

{ y =231} is stronger than

{ vy <0.23}

{(x=y*z)

{ is prime(y) }

CSE 331 Fall 2020

{y> 23}

{ y >= 23)

{ y < 0.00023 }

{y=x/ 2z}

{ is odd(y) }

18

Worksheet — problem 7

{ v > 23 } Is stronger than

{ y =231} is stronger than

{ vy <0.23} Is weaker than

{(x=y*z)

{ is prime(y) }

CSE 331 Fall 2020

{y> 23}

{ y >= 23)

{ vy < 0.00023 }

{y=x/ 2z}

{ is odd(y) }

19

Worksheet — problem 7

{ v > 23 } Is stronger than

{ v = 23 } Is stronger than

{ vy <0.23} IS weaker than

{ x =y * z } Isincomparable with

{ is prime(y) }

CSE 331 Fall 2020

y >= 23 }

y >= 23 }

y < 0.00023 }

x / z }

y

is odd(y) 1}

20

Worksheet — problem 7

{ v > 23 } Is stronger than

{ v = 23 } Is stronger than

{ vy <0.23} IS weaker than

{ x =y * z } Isincomparable with

{ is_prime(y) } isincomparable with

CSE 331 Fall 2020

{y> 23}

{y> 23}

{ y < 0.00023 }

x / z }

{y

{ is_odd(y) }

21

Questions?

What is the most surprising thing about this?
What is the most confusing thing?

What will need a bit more thinking to digest?

CSE 331 Fall 2020

22

Previously on CSE 331...

{{P}} while (cond) S {{Q}}

This triple is valid iff

{P}} * I holds initially
{Inv: I}} * I holds each time we execute S
while (cond) Q holds when I holds and cond is false
S
{o}}
e T

OO

CSE 331 Fall 2020 23

Worksheet — problem 8

Need to check each of these parts:

« code before the loop

* body of the loop

 exit of the loop gives claimed assert

» postcondition holds when returning true
« postcondition holds when returning false

WEe'll go through these in that order...

CSE 331 Fall 2020

24

Worksheet — problem 8

{{ Precondition: x >=1 }}

intk =0;
inty =1,

"{{k=0andy=1}}
{Inv:y=2kand y/2 <x}}

When k = 0, we have y = 2k = 20 = 1, which is true.

We also have y/2 = 1/2 < 1 <= X, so that part is
also true

CSE 331 Fall 2020 25

Worksheet — problem 8

{Inv:y=2kand y/2 <x}}

while (y < x) {
e, {{2y =2"and 2y/2 < x}} orequiv{{y=2kandy < x }}
y=y 2 — ok+1
{y=2""and y/2 <x }}
k=k+1; _ ok
} {{y=2%and y/2 <x }}

Inv and loop condition (y < x) include both of the
two facts we need for correctness.

CSE 331 Fall 2020 26

Worksheet — problem 8

{Inv:y=2kand y/2 <x}}

while (y < x) {
y=y*2
k=k+1;

}

{{y = 2kand y/2 < x and not (y < x) }}
{{y=2kandy/2<x<=y}}

Last fact is y >= x,
so we have y/2 < x <=y as required.

CSE 331 Fall 2020

27

Worksheet — problem 8

{{y=2kandy/2<x<=y}}

if (y == x) {

"{y=2andy=x})
{{ Postcondition: x is a power of 2 }}

return true;

} else { y is a power of 2 and y = x,

So X is a power of 2

CSE 331 Fall 2020

Worksheet — problem 8

{{y=2kandy/2<x<=y}}

if (y == x) {

} else {
"{{y=2Kandy2 <x<=yandy!=x}}
{{ Postcondition: x is not a power of 2 }}

return false;

} y 1= x tells us we have y/2 < x <y

So x lies strictly between two subsequent powers
of 2, which means it is not a power of 2.

CSE 331 Fall 2020 29

Loop Invariants

Loop invariant comes out of the algorithm idea
— describes partial progress toward the goal
— how you will get from start to end

Essence of the algorithm idea is:
— Invariant
— how you make progress on each step (e.g., 1 =

Code is ideally just details that follow from that idea...

CSE 331 Spring 2020

i+ 1)

30

Loop Invariant = Code

In fact, can usually deduce the code from the invariant:

 When does loop invariant satisfy the postcondition?
— gives you the termination condition

 What is the easiest way to satisfy the loop invariant?
— gives you the initialization code

* How does the invariant change as you make progress?
— gives you the rest of the loop body

0

CSE 331 Spring 2020

31

Another Example

Example: quotient and remainder

Problem: Set g to be the quotient of x/y and r to be the remainder
Precondition: x>=0andy >0

Postcondition: g*y +r=xand 0 <=r<y
— i.e., y doesn’t go into x any more times

CSE 331 Spring 2020

33

Example: quotient and remainder

Problem: Set g to be the quotient of x/y and r to be the remainder

Precondition: x>=0andy >0
Postcondition: g*y +r=xand 0 <=r<y

— i.e., y doesn’t go into x any more times

Loop invariant: g*y +r=xand 0 <=r

— postcondition is special case when we also haver<y

— this suggests a loop condition...

CSE 331 Spring 2020

This is (again) just a weakening
of the postcondition.
(We justdropr<y.)

34

Example: quotient and remainder

We want “r < y” when the conditions fails
— so the conditionisr>=y
— can see immediately that the postcondition holds on loop exit

{Inv:gq*y +r=xand 0 <=r}}
while (r >= y) {

}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020 35

Example: quotient and remainder

Need to make the invariant hold initially...
— search for an easy way to satisfy q*y +r=xand 0 <=r

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020

36

Example: quotient and remainder

Need to make the invariant hold initially...
— search for an easy way to satisfy q*y +r=xand 0 <=r
— how about g = 07?
- then we need r = x... and that is okay since 0 <= x

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020

37

Example: quotient and remainder

Need to make the invariant hold initially...
— search for the simplest way that works

int g = 0;

int r = x;

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;

int r = x;

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

r =r — VY,
}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;
int r = x;
{Inv:gq*y +r=xand 0 <=r}}
while (r >= y) { | {g'y+r=xand0<=randy<=r}}
S -y {qy+ry=xand0<=ry}}
TR I {q*y+r=xand0<=r}}

}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020 40

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;
int r = x: add and subtract y
{Inv:q*y +r=xand0<=r}} {g*yty+r-y=xand0<=randy <=r}}
while (r >= vy) { | {g'y+r=xand0<=randy<=r}}
. {aqgy+ry=xand0<=ry}}
BT I {qgy+r=xand0<=r}}

}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020 41

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

top has g+1 where bottom has q, so

int g = 0; we need code that changes q to g+1
int r = x; {(q+1)*y +r-y=xand 0<=randy <=r}}
{Inv:q*y +r=xand0<=r}} {q*y+y +r-y=xand0<=randy <=r}}
while (r >= y) { | {g'y+r=xand0<=randy<=r}}
oy {gy+ry=xand0<=ry}}
TR I {q*y+r=xand0<=r}}

}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020 42

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;

int r = x;

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

qg=aq+ L;

let’s double-check this, just to be sure...

r =r — VY,
}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020 43

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;
int r = x;
{Inv:qg*y+r=xand 0<=r}} +y and -y cancel to give exactly Inv
while (r >= y) { K /
g=q + 1; W(@+1)y+ry=xandy<=r}
{Qy+ry=xand0<=ry}}
T {q*y+r=xand0<=r}}

}
{gy+r=xand0<=r<y}}

CSE 331 Spring 2020 44

Aside on Efficiency

« This is not an efficient agorithm
— runs in O(x/y) time, which could be huge (e.g. x/y = 263)
— but it is correct

« Grade school “long division® is much more efficient
— runs in O((log x)?) time
— makes progress in larger steps
* (needs a more complex invariant)

CSE 331 Spring 2020

45

