CSE 331 Software Design & Implementation

Fall 2020 Section 2 – Code Reasoning

CSE 331 Fall 2020

1

Administrivia

- HW1 due tonight.
- Any questions before we dive in?
 - What are the most interesting/confusing/puzzling things so far in the course?

Agenda

- Review logical reasoning about code with Hoare Logic
- Practice both forward and backward modes
 - Just assignment, conditional ("if-then-else"), and sequence
 - Logical rules from yesterday's lecture/notes
- Review logical strength of assertions (weaker *vs.* stronger)
- Practice determining stronger/weaker assertions
- Practice checking correctness of loops.
- Practice writing loops (if time allows)

Why reason about code?

- Prove that code is correct
- Understand *why* code is correct
- Diagnose why/how code is *not* correct
- Specify code behavior

Logical reasoning about code

- Determine facts that hold of program state between statements
 - "Fact" ~ assertion (logical formula over program state, informally "value(s) of some/all program variables)
 - Driven by assumption (precondition) or goal (postconditon)
- Forward reasoning
 - What facts follow from initial assumptions?
 - Go from precondition to postcondition
- Backward reasoning
 - What facts need to be true to reach a goal?
 - Go from <u>post</u>condition to <u>pre</u>condition

Hoare Logic: Validity by Reasoning

- Checking validity of {P} S {Q}
 - Valid iff, starting from any state satisfying *P*, executing *S* results in a state satisfying *Q*
- Forward reasoning:
 - Reason from P to strongest postcondition {P} S {R}
 - Check that *R* implies *Q* (i.e., *Q* is weaker)
- Backward reasoning:
 - Reason from Q to get weakest precondition {R} S {Q}
 - Check that *P* implies *R* (i.e., *P* is stronger)

Implication (=>)

- Logic formulas with and (&, &&, or ∧), or (|, ||, or ∨) and not
 (! or ¬) have the same meaning they do in programs
- Implication might be a bit new, but the basic idea is pretty simple. Implication p=>q is true as long as q is always true whenever p is

р	q	p => q
Т	т	Т
Т	F	F
F	Т	Т
F	F	Т

Assignment Statements

- Reasoning about $\mathbf{x} = \mathbf{y}$;
- Forward reasoning:
 - add "x = y" as a new fact
 - (also rewrite any existing references to "x" to use new value)
- Backward reasoning:
 - replace all instances of "x" in the postcondition with "y"

Conditionals, more closely

Forward reasoning

{P} if (b) { $P \land b$ } S_1 { Q_1 } else { $P \land !b$ } S_2 { Q_2 } { $Q_1 \lor Q_2$ }

Backward reasoning $\{ (\mathbf{b} \land P_1) \lor (!\mathbf{b} \land P_2) \}$ if (b) $\{P_1\}$ S_1 *{Q}* else $\{P_2\}$ S_2 {*Q*} *{Q}*

Weaker vs. stronger

Formal definition:

- If $P \Rightarrow Q$, then
 - Q is weaker than P
 - P is stronger than Q

Intuitive definition:

- "Weak" means unrestrictive; a weaker assertion has a larger set of possible program states (*e.g.*, x != 0)
- "Strong" means restrictive; a stronger assertion has a smaller set of possible program states (*e.g.*, x = 1 or x > 0 are both stronger than x != 0).

Worksheet

- Take ~10 minutes to get where you can
- Find a partner and work with them
- Let me know if you feel stuck
- We'll walk through some solutions afterwards

```
{ true }
if (x>0) {
   \{ x > 0 \}
  y = 2 * x;
   \{ \mathbf{x} > 0 \land \mathbf{y} = 2\mathbf{x} \}
} else {
   \{ x <= 0 \}
  y = -2*x;
   \{ x \le 0 \land y = -2x \}
}
{ (x > 0 \land y = 2x) \lor (x \le 0 \land y = -2x) }
\Rightarrow \{ \mathbf{y} = 2 |\mathbf{x}| \}
```

```
{ y > 15 \lor (y \le 5 \land y + z > 17) }
if (y > 5) {
  \{ y > 15 \}
  \mathbf{x} = \mathbf{y} + \mathbf{2}
   \{ x > 17 \}
} else {
   \{ y + z > 17 \}
  x = y + z;
  \{ x > 17 \}
}
\{ x > 17 \}
```

Worksheet – problem 6 (forward)

```
{ true }
if (x < y) {
   { true \land x < y }
   m = x;
   \{ \mathbf{x} < \mathbf{y} \land \mathbf{m} = \mathbf{x} \}
} else {
   { true \land x \ge y }
   m = y;
   \{ \mathbf{x} \ge \mathbf{y} \land \mathbf{m} = \mathbf{y} \}
}
{ (x < y \land m = x) \lor (x \ge y \land m = y) }
\Rightarrow { m = min(x, y) }
```

Worksheet – problem 6 (backward)

```
{ true } \Leftrightarrow
\{ (x \le y \land x \le y) \lor (y \le x \land x \ge y) \}
if (x < y) {
   \{ x = min(x, y) \} \Leftrightarrow \{ x \le y \}
  m = x;
   \{ m = min(x, y) \}
} else {
   \{ y = min(x, y) \} \Leftrightarrow \{ x \ge y \}
  m = y;
   \{ m = min(x, y) \}
}
\{ m = min(x, y) \}
```

- $\{ y > 23 \}$ $\{ y >= 23 \}$
- { y = 23 } { $y \ge 23$ }
- { y < 0.23 } { y < 0.00023 }
- $\{ x = y * z \}$ $\{ y = x / z \}$
- { is_prime(y) } { is_odd(y) }

{ y > 23 }	is stronger than	{ y >= 23 }
{ y = 23 }		{ y >= 23 }
{ y < 0.23 }		{ y < 0.00023 }
${ x = y * z }$		$\{ y = x / z \}$
{ is_prime(y)	}	{ is_odd(y) }

{ y > 23 } is stronger than { y >= 23 }
{ y = 23 } is stronger than { y >= 23 }
{ y < 0.23 } { y < 0.00023 }
{ x = y * z } { y = x / z }
{ is_prime(y) }
</pre>

{	y > 23 }	is stronger than	{ y >= 23 }
{	y = 23 }	is stronger than	{ y >= 23 }
{	y < 0.23 }	is weaker than	{ y < 0.00023 }
{	x = y * z }		$\{ y = x / z \}$
{	is_prime(y)	}	{ is_odd(y) }

{ y > 23 } is stronger than { y >= 23 }
{ y = 23 } is stronger than { y >= 23 }
{ y < 0.23 } is weaker than { y < 0.00023 }
{ x = y * z } is incomparable with { y = x / z }
{ is_prime(y) } { is_odd(y) }
</pre>

{ y > 23 } is stronger than { y >= 23 }
{ y = 23 } is stronger than { y >= 23 }
{ y < 0.23 } is weaker than { y < 0.00023 }
{ x = y * z } is incomparable with { y = x / z }
{ is_prime(y) } is incomparable with { is_odd(y) }</pre>

Questions?

- What is the most surprising thing about this?
- What is the most confusing thing?
- What will need a bit more thinking to digest?

Previously on CSE 331...

{{**P**}} while (cond) S {{**Q**}}

This triple is valid iff

{{ P }}
{{ Inv: I }}
while (cond)
S
{{ Q }}

- I holds initially
- I holds each time we execute S
- **Q holds when I holds and** cond is false

Need to check each of these parts:

- code before the loop
- body of the loop
- exit of the loop gives claimed assert
- postcondition holds when returning true
- postcondition holds when returning false

We'll go through these in that order...

{{ Precondition: x >= 1 }}

int k = 0;

int y = 1;

{{ Inv: $y = 2^k$ and y/2 < x }}

When k = 0, we have $y = 2^k = 2^0 = 1$, which is true. We also have $y/2 = 1/2 < 1 \le x$, so that part is also true

Inv and loop condition (y < x) include both of the two facts we need for correctness.

```
{{ Inv: y = 2^{k} and y/2 < x }}
while (y < x) {
y = y * 2;
k = k + 1;
}
{{ y = 2^{k} and y/2 < x <= y }}
{{ y = 2^{k} and y/2 < x <= y }}
Last fact is y >= x,
```

so we have $y/2 < x \le y$ as required.

}

$$\{ \{ y = 2^k \text{ and } y/2 < x \le y \} \}$$
if $(y == x) \{$

$$\{ \{ Postcondition: x \text{ is a power of 2 } \} \}$$
return true;
$$\} else \{$$

$$y \text{ is a power of 2 and } y = x,$$
so x is a power of 2

```
\{\{ y = 2^k \text{ and } y/2 < x \le y \}\}
```

```
if (y == x) {
```

} else {

. . .

{{ y = 2^k and y/2 < x <= y and y != x }}</pre>

{{ Postcondition: x is not a power of 2 }}
return false;

y != x tells us we have y/2 < x < y

So x lies strictly between two subsequent powers of 2, which means it is not a power of 2.

Loop Invariants

- Loop invariant comes out of the algorithm idea
 - describes partial progress toward the goal
 - how you will get from start to end
- Essence of the algorithm idea is:
 - invariant
 - how you make progress on each step (e.g., i = i + 1)
- Code is *ideally* just details that follow from that idea...

Loop Invariant → Code

In fact, can usually deduce the code from the invariant:

- When does loop invariant satisfy the postcondition?
 - gives you the termination condition
- What is the easiest way to satisfy the loop invariant?
 - gives you the initialization code
- How does the invariant change as you make progress?
 - gives you the rest of the loop body

Another Example

Problem: Set q to be the quotient of x/y and r to be the remainder

Precondition: $x \ge 0$ and $y \ge 0$ Postcondition: $q^*y + r = x$ and $0 \le r \le y$

- i.e., y doesn't go into x any more times

Problem: Set q to be the quotient of x/y and r to be the remainder

Precondition: $x \ge 0$ and $y \ge 0$ Postcondition: $q^*y + r = x$ and $0 \le r \le y$

- i.e., y doesn't go into x any more times

Loop invariant: q*y + r = x and 0 <= r

- postcondition is special case when we also have r < y
- this suggests a loop condition...

This is (again) just a weakening of the postcondition. (We just drop r < y.)

We want "r < y" when the conditions fails

- so the condition is r >= y
- can see immediately that the postcondition holds on loop exit

```
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
}
{{ q*y + r = x and 0 <= r < y }}</pre>
```

Need to make the invariant hold initially...

search for an easy way to satisfy q*y + r = x and 0 <= r

```
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
}
{{ q*y + r = x and 0 <= r < y }}</pre>
```

Need to make the invariant hold initially...

- search for an easy way to satisfy q*y + r = x and 0 <= r
- how about q = 0?
 - then we need r = x... and that is okay since $0 \le x$

```
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
}
```

```
\{\{ q^*y + r = x \text{ and } 0 \le r \le y \}\}
```

Need to make the invariant hold initially...

- search for the simplest way that works

We have r large initially.

Need to shrink r on each iteration in order to terminate...

```
int q = 0;
int r = x;
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
r = r - y;
}
{{ q*y + r = x and 0 <= r < y }}</pre>
```

We have r large initially.

Need to shrink r on each iteration in order to terminate...

We have r large initially.

Need to shrink r on each iteration in order to terminate...

We have r large initially.

Need to shrink r on each iteration in order to terminate...

if r >= y, then y goes into x at least one more time

top has q+1 where bottom has q, so we need code that changes q to q+1
int r = x;
{{ (q+1)*y + r-y = x and 0 <= r and y <= r }}
{{ (q+1)*y + r-y = x and 0 <= r and y <= r }}
while (r >= y) { ${ \{ q*y + r = x and 0 <= r and y <= r \}}}
r = r - y;
}
{{ (q*y + r = x and 0 <= r - y }}
{{ (q*y + r = x and 0 <= r - y }}
{{ (q*y + r = x and 0 <= r - y })}
}</pre>$

We have r large initially.

Need to shrink r on each iteration in order to terminate...

- if r >= y, then y goes into x at least one more time

```
int q = 0;
int r = x;
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
  q = q + 1;
  r = r - y;
}
{{ q*y + r = x and 0 <= r < y }}</pre>
```

let's double-check this, just to be sure...

We have r large initially.

Need to shrink r on each iteration in order to terminate...

Aside on Efficiency

- This is not an efficient agorithm
 - runs in O(x/y) time, which could be huge (e.g. $x/y = 2^{63}$)
 - but it is correct
- Grade school "long division" is much more efficient
 - runs in $O((\log x)^2)$ time
 - makes progress in larger steps
 - (needs a more complex invariant)