CSE 331

Software Design \& Implementation

Fall 2020
Section 2 - Code Reasoning

Administrivia

- HW1 due tonight.
- Any questions before we dive in?
- What are the most interesting/confusing/puzzling things so far in the course?

Agenda

- Review logical reasoning about code with Hoare Logic
- Practice both forward and backward modes
- Just assignment, conditional ("if-then-else"), and sequence
- Logical rules from yesterday's lecture/notes
- Review logical strength of assertions (weaker vs. stronger)
- Practice determining stronger/weaker assertions
- Practice checking correctness of loops.
- Practice writing loops (if time allows)

Why reason about code?

- Prove that code is correct
- Understand why code is correct
- Diagnose why/how code is not correct
- Specify code behavior

Logical reasoning about code

- Determine facts that hold of program state between statements
- "Fact" ~ assertion (logical formula over program state, informally "value(s) of some/all program variables)
- Driven by assumption (precondition) or goal (postconditon)
- Forward reasoning
- What facts follow from initial assumptions?
- Go from precondition to postcondition
- Backward reasoning
- What facts need to be true to reach a goal?
- Go from postcondition to precondition

Hoare Logic: Validity by Reasoning

- Checking validity of $\{P\} S\{Q\}$
- Valid iff, starting from any state satisfying P, executing S results in a state satisfying Q
- Forward reasoning:
- Reason from P to strongest postcondition $\{P\} S\{R\}$
- Check that R implies Q (i.e., Q is weaker)
- Backward reasoning:
- Reason from Q to get weakest precondition $\{R\} S\{Q\}$
- Check that P implies R (i.e., P is stronger)

Implication (=>)

- Logic formulas with and (\&, \&\&, or $\wedge)$, or (|, \|, or v) and not (! or \neg) have the same meaning they do in programs
- Implication might be a bit new, but the basic idea is pretty simple. Implication $p=>q$ is true as long as q is always true whenever p is

p	\mathbf{q}	$\mathbf{p ~ = > ~ q ~}$
T	T	T
T	F	F
F	T	T
F	F	T

Assignment Statements

- Reasoning about $\mathbf{x}=\mathrm{y}$;
- Forward reasoning:
- add " $x=y$ " as a new fact
- (also rewrite any existing references to " x " to use new value)
- Backward reasoning:
- replace all instances of " x " in the postcondition with " y "

Conditionals, more closely

Forward reasoning
Backward reasoning

$\left\{\left(\mathrm{b} \wedge P_{1}\right) \vee\left(!\mathrm{b} \wedge P_{2}\right)\right\}$
if (b)
$\left\{P_{1}\right\}$
S_{1}
$\{Q\}$
else
$\left\{P_{2}\right\}$
S_{2}
$\{Q\}$
$\{Q\}$

Weaker vs. stronger

Formal definition:

- If $P \Rightarrow Q$, then
- Q is weaker than P
- P is stronger than Q

Intuitive definition:

- "Weak" means unrestrictive; a weaker assertion has a larger set of possible program states (e.g., $\mathbf{x} \quad!=0$)
- "Strong" means restrictive; a stronger assertion has a smaller set of possible program states (e.g., $\mathbf{x}=1$ or $\mathbf{x}>0$ are both stronger than $\mathbf{x} \quad!=0$).

Worksheet

- Take ~ 10 minutes to get where you can
- Find a partner and work with them
- Let me know if you feel stuck
- We'll walk through some solutions afterwards

Worksheet - problem 2

\{ true \}

```
if (x>0) {
```

 \(\{x>0\}\)
 \(y=2 * x ;\)
 \(\{x>0 \wedge y=2 x\}\)
 \} else \{
$\{x<=0\}$
$y=-2 * x ;$
$\{x<=0 \wedge y=-2 x\}$
\}
$\{(x>0 \wedge y=2 x) \vee(x<=0 \wedge y=-2 x)\}$
$\Rightarrow\{y=2|x|\}$

Worksheet - problem 4

```
{ y > 15 v (y<= 5 ^ y + z > 17) }
if (y > 5) {
    { y > 15 }
    x = y + 2
    {x>17 }
} else {
    {y+z>17 }
    x = y + z;
    { x > 17 }
}
{ x > 17 }
```


Worksheet - problem 6 (forward)

```
\{ true \}
if ( \(\mathrm{x}<\mathrm{y}\) ) \{
    \{ true \(\wedge \mathrm{x}<\mathrm{y}\}\)
    \(\mathrm{m}=\mathrm{x}\);
    \{ \(\mathrm{x}<\mathrm{y} \wedge \mathrm{m}=\mathrm{x}\}\)
\} else \{
        \{ true \(\wedge x>=y\}\)
        m = y ;
        \{ \(\mathrm{x}>=\mathrm{y} \wedge \mathrm{m}=\mathrm{y}\}\)
\}
\{ ( \(\mathrm{x}<\mathrm{y} \wedge \mathrm{m}=\mathrm{x}) \mathrm{V}(\mathrm{x}>=\mathrm{y} \wedge \mathrm{m}=\mathrm{y})\) \}
\(\Rightarrow\) \{ m \(=\min (x, y)\}\)
```


Worksheet - problem 6 (backward)

```
{ true } \Leftrightarrow
{ (x <= y ^ x < y) \vee (y <= x ^ x >= y) }
if (x < y) {
    { x = min(x, y) } \Leftrightarrow { x <= y }
    m = x;
    { m = min(x, y) }
} else {
    { y = min(x, y) } \Leftrightarrow { x >= y }
    m = y;
    { m = min(x, y) }
}
{ m = min(x, y) }
```


Worksheet - problem 7

$$
\begin{array}{ll}
\{y>23\} & \{y>=23\} \\
\{y=23\} & \{y>=23\} \\
\{y<0.23\} & \{y<0.00023 \\
\{x=y * z\} & \{y=x / z\} \\
\{\text { is_prime }(y)\} & \left\{i s _o d d(y)\right\}
\end{array}
$$

Worksheet - problem 7

```
{y>23} is stronger than
{y=23}
{y >= 23 }
{ y < 0.23 }
{ x = y * z }
{y=x / z }
{ is_prime(y) }
{ y < 0.00023 }
{ is_odd(y) }
```


Worksheet - problem 7

$\{y>23\} \quad$ is stronger than $\quad\{y>=23\}$
$\{y=23\} \quad$ is stronger than $\quad\{y>=23\}$
$\{\mathrm{y}<0.23\}$
$\{\mathbf{x}=\mathrm{y}$ * z$\}$
$\{\mathbf{y}=\mathbf{x} / \mathbf{z}\}$
\{ is_prime(y) \}
\{ is_odd(y) \}

Worksheet - problem 7

$\{y>23\} \quad$ is stronger than $\quad\{y>=23\}$
$\{y=23\} \quad$ is stronger than $\quad\{y>=23\}$
$\{\mathrm{y}<0.23\}$ is weaker than
$\{\mathrm{y}<0.00023$ \}
$\{\mathbf{x}=\mathrm{y}$ * z$\}$
$\{\mathbf{y}=\mathbf{x} / \mathbf{z}\}$
\{ is_prime(y) \}
\{ is_odd(y) \}

Worksheet - problem 7

$$
\begin{array}{ll}
\{y>23\} & \text { is stronger than } \\
\{y=23\} & \text { is stronger than } \\
\{y=23\} \\
\{y<0.23\} & \text { is weaker than } \\
\{y=y * z\} & \{y<0.00023\} \\
\{y \text { is incomparable with } & \{y=x / z\} \\
\{y \text { is }\}=(y)\} & \{\text { is_odd }(y)\}
\end{array}
$$

Worksheet - problem 7

$\{y>23\} \quad$ is stronger than $\quad\{y>=23\}$
$\{y=23\} \quad$ is stronger than $\quad\{y>=23\}$
$\{\mathrm{y}<0.23\} \quad$ is weaker than $\{\mathrm{y}<0.00023\}$
$\{\mathbf{x}=\mathbf{y} * \mathbf{z}\}$ is incomparable with $\{\mathbf{y}=\mathbf{x} / \mathbf{z}\}$
\{ is_prime (y) \} is incomparable with \{ is_odd (y) \}

Questions?

- What is the most surprising thing about this?
- What is the most confusing thing?
- What will need a bit more thinking to digest?

Previously on CSE 331...

$$
\{\{P\}\} \text { while (cond) } S\{\{Q\}\}
$$

This triple is valid iff

```
{{ P }}
{{ Inv: I }}
while (cond)
        S
\(\{\{Q\}\)
```

- I holds initially
- I holds each time we execute S
- Q holds when I holds and cond is false

Worksheet - problem 8

Need to check each of these parts:

- code before the loop
- body of the loop
- exit of the loop gives claimed assert
- postcondition holds when returning true
- postcondition holds when returning false

We'll go through these in that order...

Worksheet - problem 8

\{\{ Precondition: $\mathrm{x}>=1$ \}\}
int k = 0;
int $\mathrm{y}=1$;

$$
\{\{\mathrm{k}=0 \text { and } \mathrm{y}=1\}\}
$$

$\left\{\left\{\operatorname{Inv}: y=2^{k}\right.\right.$ and $\left.\left.y / 2<x\right\}\right\}$

When $\mathrm{k}=0$, we have $\mathrm{y}=2^{\mathrm{k}}=2^{0}=1$, which is true.
We also have $y / 2=1 / 2<1<=x$, so that part is also true

Worksheet - problem 8

$\left\{\left\{\operatorname{lnv}: y=2^{k}\right.\right.$ and $\left.\left.y / 2<x\right\}\right\}$
while ($\mathrm{y}<\mathrm{x}$) \{
$y=y * 2 ;$
$\mathrm{k}=\mathrm{k}+1$;

$$
\left\{\begin{array}{l}
\left\{\left\{2 y=2^{k+1} \text { and } 2 y / 2<x\right\}\right\} \text { or equiv }\left\{\left\{y=2^{k} \text { and } y<x\right\}\right\} \\
\left\{\left\{y=2^{k+1} \text { and } y / 2<x\right\}\right\} \\
\left\{\left\{y=2^{k} \text { and } y / 2<x\right\}\right\}
\end{array}\right.
$$

Inv and loop condition ($\mathrm{y}<\mathrm{x}$) include both of the two facts we need for correctness.

Worksheet - problem 8

$\left\{\left\{\operatorname{lnv}: y=2^{k}\right.\right.$ and $\left.\left.y / 2<x\right\}\right\}$
while ($\mathrm{y}<\mathrm{x}$) \{
$y=y * 2 ;$
$\mathrm{k}=\mathrm{k}+1$;
\}
$\left\{\left\{y=2^{k}\right.\right.$ and $y / 2<x$ and not $\left.\left.(y<x)\right\}\right\}$
$\left\{\left\{y=2^{k}\right.\right.$ and $\left.\left.y / 2<x<=y\right\}\right\}$
Last fact is $\mathrm{y}>=\mathrm{x}$,
so we have $y / 2<x<=y$ as required.

Worksheet - problem 8

$\left\{\left\{y=2^{k}\right.\right.$ and $\left.\left.y / 2<x<=y\right\}\right\}$
if $(\mathrm{y}=\mathrm{=})$ \{

```
\{\{ Postcondition: x is a power of 2 \}\}
return true;
\} else \{
\[
\left\{\left\{y=2^{k} \text { and } y=x\right\}\right\}
\]
{{y=2k}\mathrm{ and }y=x}
```

...
\}

Worksheet - problem 8

$\left\{\left\{y=2^{k}\right.\right.$ and $\left.\left.y / 2<x<=y\right\}\right\}$
if $(y==x)\{$
\} else \{

$$
{ }^{\downarrow}\left\{\left\{y=2^{k} \text { and } y / 2<x<=y \text { and } y!=x\right\}\right\}
$$

$\{\{$ Postcondition: x is not a power of 2 \}\} return false;
\}
y != x tells us we have $y / 2<x<y$
So x lies strictly between two subsequent powers of 2 , which means it is not a power of 2 .

Loop Invariants

- Loop invariant comes out of the algorithm idea
- describes partial progress toward the goal
- how you will get from start to end
- Essence of the algorithm idea is:
- invariant
- how you make progress on each step (e.g., i = i + 1)
- Code is ideally just details that follow from that idea...

Loop Invariant \rightarrow Code

In fact, can usually deduce the code from the invariant:

- When does loop invariant satisfy the postcondition?
- gives you the termination condition
- What is the easiest way to satisfy the loop invariant?
- gives you the initialization code
- How does the invariant change as you make progress?
- gives you the rest of the loop body

Another Example

Example: quotient and remainder

Problem: Set q to be the quotient of x / y and r to be the remainder

Precondition: $x>=0$ and $y>0$
Postcondition: $q^{*} y+r=x$ and $0<=r<y$

- i.e., y doesn't go into x any more times

Example: quotient and remainder

Problem: Set q to be the quotient of x / y and r to be the remainder

Precondition: $x>=0$ and $y>0$
Postcondition: $q^{*} y+r=x$ and $0<=r<y$

- i.e., y doesn't go into x any more times

Loop invariant: $q^{*} y+r=x$ and $0<=r$

- postcondition is special case when we also have $r<y$
- this suggests a loop condition...

This is (again) just a weakening
of the postcondition.
(We just drop $r<y$.)

Example: quotient and remainder

We want " r < y " when the conditions fails

- so the condition is $r>=y$
- can see immediately that the postcondition holds on loop exit

```
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
}
{{ q*y + r = x and 0 <= r < y }}
```


Example: quotient and remainder

Need to make the invariant hold initially...

- search for an easy way to satisfy $q^{*} y+r=x$ and $0<=r$
$\left\{\left\{\operatorname{lnv}: q^{*} y+r=x\right.\right.$ and $\left.\left.0<=r\right\}\right\}$

```
while (r >= y) {
```

\}
$\left\{\left\{q^{*} y+r=x\right.\right.$ and $\left.0<=r<y\right\}$

Example: quotient and remainder

Need to make the invariant hold initially...

- search for an easy way to satisfy $q^{*} y+r=x$ and $0<=r$
- how about $q=0$?
- then we need $r=x$... and that is okay since $0<=x$

```
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
}
{{ q*y + r = x and 0 <= r < y }}
```


Example: quotient and remainder

Need to make the invariant hold initially...

- search for the simplest way that works

```
int q = 0;
int r = x;
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
}
{{ q*y +r=x and 0 <= r < y }}
```


Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...

- if $r>=y$, then y goes into x at least one more time

```
int q = 0;
int r = x;
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
    r = r - Y;
}
{{ q*y +r=x and 0<= r < y }}
```


Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...

- if $r>=y$, then y goes into x at least one more time

```
int q = 0;
int r = x;
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
    r = r - Y;
}
{{ q*y + r = x and 0<= r < y }}
```


Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...

- if $r>=y$, then y goes into x at least one more time

```
int q = 0;
int r = x;
add and subtract y
{{ Inv: q*y +r=x and 0<=r }} {{ q*y+y +r-y = x and 0<= r and y <= r }}
while (r >= y) {
    {{ q*y +r=x and 0<=r and y<= r}}
    r = r - y;
}
{{ q*y + r = x and 0 <= r < y }}
```


Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...

- if $r>=y$, then y goes into x at least one more time

```
int q = 0;
int r = x;
{{ Inv: q*y + r = x and 0<= r }}
while (r >= y) {
    r = r - y;
}
{{ q*y + r = x and 0 <= r < y }}
```


Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...

- if $r>=y$, then y goes into x at least one more time

```
int q = 0;
int r = x;
{{ Inv: q*y + r = x and 0 <= r }}
while (r >= y) {
    q = q + 1;
    r = r - Y;
}
{{ q*y +r=x and 0 <= r < y }}
```

 let's double-check this, just to be sure...

Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...

- if $r>=y$, then y goes into x at least one more time

```
int q = 0;
int r = x;
{{ Inv: q*y + r = x and 0 <= r }}
+y and -y cancel to give exactly Inv
while (r >= y) {
    q = q + 1;
    r = r - Y;
}
    {{ (q+1)*y + r-y = x and y <= r }}
    {{ q*y +r-y = x and 0<= r-y }}
    {{ q*y +r=x and 0<= r }}
{{ q*y + r = x and 0 <= r < y }}
```


Aside on Efficiency

- This is not an efficient agorithm
- runs in $O(x / y)$ time, which could be huge (e.g. $x / y=2^{63}$)
- but it is correct
- Grade school "long division" is much more efficient
- runs in $\mathrm{O}\left((\log x)^{2}\right)$ time
- makes progress in larger steps
- (needs a more complex invariant)

