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Administrivia

 HWH1 due tonight.

* Any questions before we dive in?

— What are the most interesting/confusing/puzzling things so far in
the course?
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Agenda

Review logical reasoning about code with Hoare Logic
Practice both forward and backward modes

— Just assignment, conditional (“if-then-else”), and sequence
— Logical rules from yesterday’s lecture/notes

Review logical strength of assertions (weaker vs. stronger)
Practice determining stronger/weaker assertions

Practice checking correctness of loops.

Practice writing loops (if time allows)
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Why reason about code?

Prove that code is correct

Understand why code is correct

Diagnose why/how code is not correct

Specify code behavior
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Logical reasoning about code

« Determine facts that hold of program state between statements

— “Fact” ~ assertion (logical formula over program state,
informally “value(s) of some/all program variables)

— Driven by assumption (precondition) or goal (postconditon)

« Forward reasoning
— What facts follow from initial assumptions?
— Go from precondition to postcondition

« Backward reasoning
— What facts need to be true to reach a goal?
— Go from postcondition to precondition
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Hoare Logic: Validity by Reasoning

« Checking validity of {P} S {Q}
— Valid iff, starting from any state satisfying P, executing S
results in a state satisfying Q

* Forward reasoning:
— Reason from P to strongest postcondition {P} S {R}

— Check that Rimplies Q(i.e., Qis weaker)

« Backward reasoning:
— Reason from Q to get weakest precondition {R} S {Q}

— Check that P implies R (i.e., P is stronger)
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Implication (=>)

« Logic formulas with and (&, &&, or A), or (|, ||, or v) and not
(! or 7) have the same meaning they do in programs

* Implication might be a bit new, but the basic idea is pretty
simple. Implication p=>q is true as long as q is always true
whenever p is

T T T
T F F
F T T
F F T
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Assignment Statements

« Reasoning aboutx = y;

* Forward reasoning:
— add “x =y” as a new fact
— (also rewrite any existing references to “x” to use new value)

« Backward reasoning:
— replace all instances of “x” in the postcondition with “y”
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Conditionals, more closely

Forward reasoning Backward reasoning
{P} {AP)V('bAP,)}
if (b) if (b)

{P ADb} {P.}

S, S,

{Q:} {0}
else else

{PA!b} {P,}

S, S,

{Q:} {0}
{0V Q} {Q}
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Weaker vs. stronger

Formal definition:
e |[fP= Q, then
— Qis weaker than P o,

— Pis stronger than Q

Intuitive definition:

« “Weak” means unrestrictive; a weaker assertion has a larger set
of possible program states (e.g., x '= 0)

« “Strong” means restrictive; a stronger assertion has a smaller set
of possible program states (e.g., x = 1 or x > 0 are both
stronger than x '= 0).
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Worksheet

Take ~10 minutes to get where you can

Find a partner and work with them

Let me know if you feel stuck

We'll walk through some solutions afterwards
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Worksheet — problem 2

{ true }
if (x>0) {

{ x> 0}

y = 2*x;

{ x>0 Ay =2x }
} else {

{ x <=0 }

y = —-2*x;

{ x<=0Ay = -2x }
}
{ x>0Ay=2x) V (x<=0Ay=-2x) }
= {y=2|x| }
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Worksheet — problem 4

{y>15V (y<=5Ay + 2z >17) }
if (y > 5) {

{y>15}
X =y + 2
{ x > 17 }
} else {
{y+ 2z >17 }
X =y + z;
{ x> 17 }

{ x> 17 }

CSE 331 Fall 2020



Worksheet — problem 6 (forward)

{ true }
if (x < y) {
{ true A x < y }
m = x;
{ x <y Am=x}
} else {
{ true A x >= vy }
m=y;
{x>yAm=y}
}
{ x <y Am=x)V (x> y Am=y) }
= {m =min(x, y) }
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Worksheet — problem 6 (backward)

{ true } &
{ x <=y Ax<y)V (y<=xAx>vy) }
if (x < y) {
{ x =min(x, v) } & { x <=y }
m = Xx;
{ m=min(x, y) }
} else {
{y=min(x, y) } @ { x>y}
m=y;

{m=min(x, y) }

=)
I

min(x, y) }
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Worksheet — problem 7

{y>23}

{y=231}

{ vy <0.23}

{(x=y*z)

{ is prime(y) }
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{y> 23}

{ y >= 23 )

{ y < 0.00023 }

{y=x/ 2z}

{ is odd(y) }
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Worksheet — problem 7

{ v > 23 } Is stronger than

{y=231}

{ vy <0.23}

{(x=y*z)

{ is prime(y) }
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{y> 23}

{ y >= 23 )

{ y < 0.00023 }

{y=x/ 2z}

{ is odd(y) }
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Worksheet — problem 7

{ v > 23 } Is stronger than

{ y =231} is stronger than

{ vy <0.23}

{(x=y*z)

{ is prime(y) }
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{y> 23}

{ y >= 23 )

{ y < 0.00023 }

{y=x/ 2z}

{ is odd(y) }
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Worksheet — problem 7

{ v > 23 } Is stronger than

{ y =231} is stronger than

{ vy <0.23} Is weaker than

{(x=y*z)

{ is prime(y) }
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{y> 23}

{ y >= 23 )

{ vy < 0.00023 }

{y=x/ 2z}

{ is odd(y) }
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Worksheet — problem 7

{ v > 23 } Is stronger than

{ v = 23 } Is stronger than

{ vy <0.23} IS weaker than

{ x =y * z } Isincomparable with

{ is prime(y) }
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y >= 23 }

y >= 23 }

y < 0.00023 }

x / z }

y

is odd(y) 1}
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Worksheet — problem 7

{ v > 23 } Is stronger than

{ v = 23 } Is stronger than

{ vy <0.23} IS weaker than

{ x =y * z } Isincomparable with

{ is_prime(y) } isincomparable with
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{y> 23}

{y> 23}

{ y < 0.00023 }

x / z }

{y

{ is_odd(y) }
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Questions?

What is the most surprising thing about this?
What is the most confusing thing?

What will need a bit more thinking to digest?
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Previously on CSE 331...

{{P}} while (cond) S {{Q}}

This triple is valid iff

{P}} * I holds initially
{Inv: I}} * I holds each time we execute S
while (cond)  Q holds when I holds and cond is false
S
{o}}
e T

OO
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Worksheet — problem 8

Need to check each of these parts:

« code before the loop

* body of the loop

 exit of the loop gives claimed assert

» postcondition holds when returning true
« postcondition holds when returning false

WEe'll go through these in that order...

CSE 331 Fall 2020
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Worksheet — problem 8

{{ Precondition: x >=1 }}

intk =0;
inty =1,

"{{k=0andy=1}}
{Inv:y=2kand y/2 <x}}

When k = 0, we have y = 2k = 20 = 1, which is true.

We also have y/2 = 1/2 < 1 <= X, so that part is
also true
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Worksheet — problem 8

{Inv:y=2kand y/2 <x}}

while (y < x) {
e, {{2y =2"and 2y/2 < x}} orequiv{{y=2kandy < x }}
y=y 2 — ok+1
{y=2""and y/2 <x }}
k=k+1; _ ok
} {{y=2%and y/2 <x }}

Inv and loop condition (y < x) include both of the
two facts we need for correctness.
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Worksheet — problem 8

{Inv:y=2kand y/2 <x}}

while (y < x) {
y=y*2
k=k+1;

}

{{y = 2kand y/2 < x and not (y < x) }}
{{y=2kandy/2<x<=y}}

Last fact is y >= x,
so we have y/2 < x <=y as required.

CSE 331 Fall 2020
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Worksheet — problem 8

{{y=2kandy/2<x<=y}}

if (y == x) {

"{y=2andy=x})
{{ Postcondition: x is a power of 2 }}

return true;

} else { y is a power of 2 and y = x,

So X is a power of 2
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Worksheet — problem 8

{{y=2kandy/2<x<=y}}

if (y == x) {

} else {
"{{y=2Kandy2 <x<=yandy!=x}}
{{ Postcondition: x is not a power of 2 }}

return false;

} y 1= x tells us we have y/2 < x <y

So x lies strictly between two subsequent powers
of 2, which means it is not a power of 2.
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Loop Invariants

Loop invariant comes out of the algorithm idea
— describes partial progress toward the goal
— how you will get from start to end

Essence of the algorithm idea is:
— Invariant
— how you make progress on each step (e.g., 1 =

Code is ideally just details that follow from that idea...

CSE 331 Spring 2020
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Loop Invariant = Code

In fact, can usually deduce the code from the invariant:

 When does loop invariant satisfy the postcondition?
— gives you the termination condition

 What is the easiest way to satisfy the loop invariant?
— gives you the initialization code

* How does the invariant change as you make progress?
— gives you the rest of the loop body

0

CSE 331 Spring 2020
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Another Example



Example: quotient and remainder

Problem: Set g to be the quotient of x/y and r to be the remainder
Precondition: x>=0andy >0

Postcondition: g*y +r=xand 0 <=r<y
— i.e., y doesn’t go into x any more times

CSE 331 Spring 2020
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Example: quotient and remainder

Problem: Set g to be the quotient of x/y and r to be the remainder

Precondition: x>=0andy >0
Postcondition: g*y +r=xand 0 <=r<y

— i.e., y doesn’t go into x any more times

Loop invariant: g*y +r=xand 0 <=r

— postcondition is special case when we also haver<y

— this suggests a loop condition...
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This is (again) just a weakening
of the postcondition.
(We justdropr<y.)
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Example: quotient and remainder

We want “r < y” when the conditions fails
— so the conditionisr>=y
— can see immediately that the postcondition holds on loop exit

{Inv:gq*y +r=xand 0 <=r}}
while (r >= y) {

}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

Need to make the invariant hold initially...
— search for an easy way to satisfy q*y +r=xand 0 <=r

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

Need to make the invariant hold initially...
— search for an easy way to satisfy q*y +r=xand 0 <=r
— how about g = 07?
- then we need r = x... and that is okay since 0 <= x

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

Need to make the invariant hold initially...
— search for the simplest way that works

int g = 0;

int r = x;

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;

int r = x;

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

r =r — VY,
}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;
int r = x;
{Inv:gq*y +r=xand 0 <=r}}
while (r >= y) { | {g'y+r=xand0<=randy<=r}}
S -y {qy+ry=xand0<=ry}}
TR I {q*y+r=xand0<=r}}

}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;
int r = x: add and subtract y
{Inv:q*y +r=xand0<=r}} {g*yty+r-y=xand0<=randy <=r}}
while (r >= vy) { | {g'y+r=xand0<=randy<=r}}
. {aqgy+ry=xand0<=ry}}
BT I {qgy+r=xand0<=r}}

}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

top has g+1 where bottom has q, so

int g = 0; we need code that changes q to g+1
int r = x; {(q+1)*y +r-y=xand 0<=randy <=r}}
{Inv:q*y +r=xand0<=r}} {q*y+y +r-y=xand0<=randy <=r}}
while (r >= y) { | {g'y+r=xand0<=randy<=r}}
oy {gy+ry=xand0<=ry}}
TR I {q*y+r=xand0<=r}}

}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;

int r = x;

{Inv:gq*y +r=xand 0 <=r}}
while (r >= vy) {

qg=aq+ L;

let’s double-check this, just to be sure...

r =r — VY,
}
{gy+r=xand0<=r<y}}
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Example: quotient and remainder

We have r large initially.
Need to shrink r on each iteration in order to terminate...
— ifr>=vy, then y goes into x at least one more time

int g = 0;
int r = x;
{Inv:qg*y+r=xand 0<=r}} +y and -y cancel to give exactly Inv
while (r >= y) { K /
g=q + 1; W(@+1)y+ry=xandy<=r}
{Qy+ry=xand0<=ry}}
T {q*y+r=xand0<=r}}

}
{gy+r=xand0<=r<y}}
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Aside on Efficiency

« This is not an efficient agorithm
— runs in O(x/y) time, which could be huge (e.g. x/y = 263)
— but it is correct

« Grade school “long division® is much more efficient
— runs in O((log x)?) time
— makes progress in larger steps
* (needs a more complex invariant)
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