
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2020
Servers



Event-driven programming

An event-driven program is designed to wait for events:
– program initializes then enters the event loop
– abstractly:

do {
e = getNextEvent();
process event e;

} while (e != quit);

2CSE 331 Fall 2020



Server Programming

• Servers sit around waiting for events like:
– new client connections
– new data from the client (high scale servers)

• Simple version (normal scale):

while (true) {
wait for a client to connect
process the request; send a response back

}

– probably want to use a new thread for processing
– high scale web servers might look quite different

3CSE 331 Fall 2020



Example: Chat Server

ChatServer.java

4CSE 331 Fall 2020



Server Sockets & Ports

• Server creates a “server socket” and waits for a connection
– each connection comes with an individual socket
– allows reading from / writing to that client

• Servers on the same machine distinguished by a port number
– numbers below 1024 require admin privileges

ServerSocket ssock = new ServerSocket(80);

• Clients indicate the port when trying to connect:

Socket sock = new Socket(“attu”, 80);

5CSE 331 Fall 2020



Ports & Protocols

• Sockets API allows reading & writing of byte data
– like the File API

• Each server can define its own protocol for communication
– the language it uses to speak to clients

• By convention, ports are associated with particular protocols
– 80 = HTTP
– 443 = HTTPS
– 25 = SMTP relay
– …

• Client that wants to talk HTTP can try connecting to 80
6CSE 331 Fall 2020



Protocols

• HTTP (Hyper-Text Transfer Protocol) is the most important
– initially created for retrieving HTML documents
– simple, text-based protocol

• Trend moving away from new protocols toward re-use of HTTP
– Google (2010s) used HTTP for almost everything

• Allows for re-use of libraries for creating HTTP servers…
– use of libraries reduces bugs, saves time, etc.
– do not write your own HTTP server

7CSE 331 Fall 2020


