
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2020

HTTP Servers



HTTP



HTTP Request 1

GET /index.html HTTP/1.1

• Request ends with a blank line

• Between GET and blank are optional headers of the form

Name: Value

– similar to Java properties files
– common example would be User-Agent to describe client

CSE 331 Fall 2020 3



HTTP Response 1

HTTP/1.1 200 OK
content-length: 5678

content-type: text/html; charset=UTF-8
Date: Wed, 27 May 2020 18:30:00 GMT
Connection: close

<html>

…

• 200 status code indicates successful
• 400s for error that is the client’s fault
• 500s for errors on the server’s end

CSE 331 Fall 2020 4



Demo

(command-line HTTP request)

5CSE 331 Fall 2020



HTTP Request 2

POST /register HTTP/1.1
content-type: application/x-www-form-urlencoded

content-length: 25

fname=Kevin&userid=kevinz

• POST request includes client content

• 25 bytes of content after the blank line
– newlines are just another byte

CSE 331 Fall 2020 6



HTTP

• GET & POST requests are by far the most common
– other types like DELETE also exist

• See CSE 333 for a more complete discussion
– (no need to memorize the details here)

CSE 331 Fall 2020 7



Uniform Resource Locators (URLs)

• Tells the browser what to get and how to get it

http://attu:8080/index.html

Connect to server attu on port 8080

Send GET request

GET /index.html HTTP/1.1
…

CSE 331 Fall 2020 8



Uniform Resource Locators (URLs)

• Port is optional (default is 80 for HTTP)

• Optional “?a=b&c=d” part of path is called query string
– “&”-separated key=value pairs
– useful for passing arguments to the server-side code…

• Fragment is only kept in the browser
– client can use this to record its place in the document
– allows back/forward buttons to work on a single page

CSE 331 Fall 2020 9

http://attu:8080/cse331/test?a=b&c=d#whatever

protocol hostname port path query string fragment



HTTP SERVERS



Server Frameworks

• How do we write a modular HTTP server?
– need to split up the code into multiple classes

• Usual technique is to route requests using the path
– use path to choose class that handles the request
– used in Java, C++, Python, JavaScript, …
– pass data to class using:

• query string
• POST body
• (part of) path

CSE 331 Fall 2020 11



Spark Java

• Simple library for writing HTTP servers in Java
– not to be confused with “Apache Spark” — very different!

• Give Spark paths and corresponding classes
– latter are called “routes” in this library
– server will read the request path and invoke appropriate class

• info about the request passed in request object
• response can be written to response object or returned

• Library handles the event loop

CSE 331 Fall 2020 12



Spark Java

Spark.get(“/path”, new MyRoute());

• GET request with this path are sent to this object

• Second argument must implement Route interface
– single required method handle(Request, Response)
– that means it can also be implemented with a Lambda

Spark.get(“/ready”, (request, response) -> {
return “Nah, I’m busy”;

});

CSE 331 Fall 2020 13



Example: Hello Server

HelloServer.java

14CSE 331 Fall 2020



Example: To-Do Server

• Stores a To-Do list

• Clients can retrieve the current list

• Clients can update the list
– check off an item
– add a new item

CSE 331 Fall 2020 15



Example: To-Do Server

ToDoServer.java

16CSE 331 Fall 2020



Spark Java

• Many more features
– simple things are simple
– complex things are possible

• Simple version is single threaded
– makes life much easier
– medium scale would use threads
– high scale would not use them (see lecture 16)

• Documentation at http://sparkjava.com/documentation

CSE 331 Fall 2020 17

http://sparkjava.com/documentation


HTTP CLIENTS



Client / Server communication

• Original JavaScript API: XmlHttpRequest

• Create object call open to configure
– pass in GET / POST, path, and async = true

• Listen for response event
– onload invoked when done

• responseText contains the response body string

• Call send to start the request
– for a POST, pass in the request body
– for GET, pass null

CSE 331 Fall 2020 19



Example: To-Do Client

HelloApp.tsx

20CSE 331 Fall 2020



Client / Server communication

• Original JavaScript API: XmlHttpRequest

• Newer APIs discussed in section
– fetch API returns a Promise object

• widely used in JS programming these days
• works well for sequential reqs: start task 1, wait for result, 

start task 2, wait for result, start task 3, wait for result
• works well for parallel reqs: start tasks 1–3, wait for all

– async / await JS keywords automatically create promises
• write sequential code in one block
• compiler will split into separate pieces

CSE 331 Fall 2020 21



Client / Server communication

• By default, client can only talk to the server from 
which the code was loaded
– same machine and same port
– “same origin” policy

• For development, we often want to split do this
– npm runs a separate server that recompiles client code
– can allow cross-domain requests in the Java server

• example code does this
– can set up recompiling server to forward these requests
– (annoying but we’re stuck with it)

CSE 331 Fall 2020 22



Debugging

• Network tab in Chrome shows every request
– full details of request

• path, headers, etc.
– full details of response

• status code, response body, etc.
– timing information

CSE 331 Fall 2020 23


