
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2020

Modern Web UIs

CSE 331 Fall 2020 1



Problems

This is better, but it still has problems…

1. Still no checking of HTML (opaque strings)

2. Modularity is still poor
– need to join strings into one big string

3. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand

CSE 331 Fall 2020 2



JSX

• Fix the first problem by adding HTML as a JS type

• This is supported in .jsx files:

let x = <p>Hi, {name}.</p>;

• Compiler can now check that this is valid HTML

• {…} replaced with string value of expression

CSE 331 Fall 2020 3



JSX Gotchas

• Put (..) around HTML if it spans multiple lines

• Cannot use class=“btn” in your HTML
– class, for, etc. are reserved words in JS
– use className, htmlFor, etc.

• Must have a single top-level tag:
– not: return <p>one</p><p>two</p>;
– usually fixed by wrapping those parts in a div

CSE 331 Fall 2020 4



Problems

This is even better, but it still has problems…

1. Modularity is still poor
– need to join strings into one big string

2. More boilerplate
– minimized JS file would change function names
– need to call btn.addEventListener by hand

CSE 331 Fall 2020 5



React

• Regain modularity by allowing custom tags

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions

CSE 331 Fall 2020 6



React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …

CSE 331 Fall 2020 7



React Example

register-react/…

CSE 331 Fall 2020 8



React State

• Last example was not dynamic!
– there was no model
– (why have classes then?)

CSE 331 Fall 2020 9



Structure of a React Application

10CSE 331 Fall 2020

Model

Listeners

HTML

data and invariants

presentation

eventsupdates



React State

• Last example was not dynamic!
– there was no model
– (why have classes then?)

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the HTML to match the 

HTML produced by this call
CSE 331 Fall 2020 11



Example 5

register-react2/…

CSE 331 Fall 2020 12



Structure of Example React App

13

Quarter 
PickerApp

Class
Picker

State:
– quarter

onPick

Props:
– quarter

State:
– classes

quarter

onBack



React State

• Custom tag also has its own events

• Updating data in a parent:
– sends parent component new data via event
– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props

CSE 331 Fall 2020 14



Splitting the Model

• State should exist in the lowest common parent of 
all the components that need it
– sent down to children via props

• Children change it via events
– sent up to the parent so it can change its state

• Parent’s render creates new children with new props

CSE 331 Fall 2020 15



Structure of a React Application

16CSE 331 Fall 2020

Model

Listeners

HTML

data and invariants

presentation

eventsupdates



Structure of a React Application

• Model must store all data necessary to generate the 
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored 
in the model
– e.g., every text field’s value must be part of some 

React component’s state
– render produces

<input type=“text” value={…}>

CSE 331 Fall 2020 17



React setState

• setState does not update state instantly:

// this.state.x is 2

this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates
CSE 331 Fall 2020 18



React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will 
be hard to catch!

CSE 331 Fall 2020 19



React Performance

• React re-computes the tree of HTML on state change
– can compute a “diff” vs last version to get changes

• Surprisingly, this is not slow!
– slow part is calls into browser methods
– pure-JS parts are very fast in modern browsers
– processing HTML strings is also incredibly fast

CSE 331 Fall 2020 20



React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)

CSE 331 Fall 2020 21


