
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2020

User Interfaces & JavaScript

Graphical User Interfaces (GUIs)

• Large and important class of event-driven programs
– waits for user-interaction events
– mouse clicks, button presses, etc.

• Java, Android, Web, etc. provide libraries to write these
– each of these use the Observer pattern

• Using these libraries decreases bugs
– also gives users a familiar experience

2CSE 331 Fall 2020

GUI terminology
window: A first-class citizen of the graphical desktop

– also called a top-level container
– Examples: frame (window), dialog box

component: A GUI widget that resides in a window
– called controls in many other languages
– Examples: button, text box, label

container: A component that hosts (holds) & lays out components
– Examples: frame, panel, box

3CSE 331 Fall 2020

More components…

CSE331 Winter 2019 4

Structure of GUI Application

5CSE 331 Fall 2020

Model

Listeners

GUI
Components

data and invariants (provided by library)

presentation

eventsupdates

Improvements in GUI Libraries

• Core parts of the applications are:
– data and invariants (model)
– mapping from model into components (view)
– updates performed in response to events (controller / model)

• Early libraries required a lot of code to implement these

• More recent improvements have made this easier
– highly valuable
– your time is important
– less code (usually) means fewer bugs

6CSE 331 Fall 2020

This lecture

• Brief survey of Java, Android, & Web
– discuss how each handles issues below
– (no need to memorize anything)

• Introductory discussion of JavaScript

7CSE 331 Fall 2020

AWT / Swing Example 1

SimpleFieldDemo.java

CSE 331 Fall 2020 8

Containers and layout

• Container needs to position (lay out) the child components
• You need to tell it how you want them arranged

• In AWT / Swing, each container has a layout manager

9

AWT / Swing Examples

• Default is a flow layout
– components placed next to each other
– wrap around when out of space on the line

• Can change to a 2 x 2 grid layout

10CSE 331 Fall 2020

AWT / Swing Example 2

SimpleFieldDemo2.java

CSE 331 Fall 2020 11

AWT / Swing Examples

• Does not look natural

• Instead try 2 rows (2 x 1 grid) and flow layout within the rows

12

Panel (2x1 grid)

field 1

button 1

Panel (flow)

Panel (flow)

field 2

button 2

Panel (2x2 grid)

field 1

button 1

field 2

button 2

AWT / Swing Example 3

SimpleFieldDemo3.java

CSE 331 Fall 2020 13

Easier Layout Idea #1: Just Say No

• Much of the difficulty here has to do with resizing…

• Do we really need to support resizing?

• Two platforms
– Android / iPhone
– Bootstrap (HTML)

14CSE 331 Fall 2020

iPhone / Android Layout

• iPhone and iPad come in fixed sizes
• Just give a fixed layout for each possible size

CSE 331 Fall 2020 15

Bootstrap (HTML)

• Width is restricted to one of 5 values (phone up to huge screen)
– library automatically switches to best match for screen width
– can use the same design for multiple sizes if you wish

• Still allows arbitrary height for the content

CSE 331 Fall 2020 16

Bootstrap Example

BootstrapDemo.html

CSE 331 Fall 2020 17

Easier Layout Idea #2: Declarative UI

• How much of layout needs to be code?
– does this really require forward / backward reasoning?

• iPhone / Android show that this can be done
– only for fixed sized screens

• HTML can be used as a more declarative language for UI
– (.NET and other frameworks have comparable toolkits)

18CSE 331 Fall 2020

HTML, Formally

• Hyper-Text Markup Language

• Consists tags and their content
– components become tags

• input fields, buttons, etc.
– containers have start and end tags

• tags placed in between are children
– additional information provided to the tag with “attributes”

19CSE 331 Fall 2020

Anatomy of a Tag

<p> Some Text </p>

CSE 331 Fall 2020 20

Tag Name Content

Closing Tag

Element

Anatomy of a Tag

<p id=”firstParagraph”> Some Text </p>

CSE 331 Fall 2020 21

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Element

Tags form a Tree
<div>

<p id=”firstParagraph”> Some Text </p>

<div>

<p>Hello</p>
</div>

</div>

CSE 331 Fall 2020 22

div

p br div

p

This tree, as it lives in
the browser, is often
called the "DOM" –
Document Object Model

A Few Useful Tags

• See the W3Schools HTML reference for a complete list, along
with all their supported attributes.

• Some worth knowing:
• <p> - Paragraph tag, surrounds text with whitespace/line

breaks.
• <div> - “The curly braces of HTML” - used for grouping

other tags. Surrounds its content with whitespace/line
breaks.

• - Like <div>, but no whitespace/line breaks.
•
 - Forces a new line (like “\n”). Has no content.
• <html> and <head> and <body> - Used to organize a

basic HTML document.

CSE 331 Fall 2020 23

HTML + JS

• To make an app we also need code

• Code is provided inside a <script> tag
– all browsers support the JavaScript language
– more in a moment…

24CSE 331 Fall 2020

HTML + JS UI Example

HtmlFieldDemo.html

CSE 331 Fall 2020 25

HTML + JS + CSS

• HTML removes the need for panel.add calls
– parent / child relationship implied by structure

• Cascading Style Sheets allow separation of styling from rest
– styling is colors, margins, etc.
– allows non-programmers to take some of this work

• code produces document structure (tree of tags)
• changes to tags require agreement by both parties

26CSE 331 Fall 2020

JAVASCRIPT

JavaScript (formally EcmaScript)

• Created in 1995 by Brendan Eich as a “scripting
language” for Mozilla’s browser
– done in 10 days!

• No relation to Java other than trying to piggyback on
all the Java hype at that time

• Tricky due to its simplicity
– examples coming shortly…

CSE 331 Fall 2020 28

Syntax and variables

• Syntax similar to Java, C, etc.
• /* comments */ or // comments (prefer //)
• Variables have no type constraints:

let x = 42;
x = "ima string now!”;

– introduced into program with let
– use const for constants

• Semicolons are optional at ends of lines and often
omitted, but also encouraged J

CSE 331 Fall 2020 29

Control flow – just like Java

• Conditionals

if (condition) {
statements
} else if (condition){
statements
} else {

statements
}

• Loops
while (condition) {
statements
}

for (init; condition; update){
statements
}

– Also for-of and for-in loops
• Be careful with these. They have

“interesting” semantics and
differences that you need to get
right if you use them.

CSE 331 Fall 2020 30

Types

• Values do have types, but just 6 of them:
– number
– string
– boolean
– null & undefined
– Object (including arrays / lists)

CSE 331 Fall 2020 31

Number Type

• All numbers are floating point! Even here:

for (let i = 0; i < 10; i++) { … }

• Usual numeric operations:
– + - * /
– ++ --
– +=

– ...

• Math methods much the same as in Java

CSE 331 Fall 2020 32

String type

• Immutable as in Java
• Most of the same methods as in Java
• String concatenation with +

• But also string comparison with <

• Better string literals: `Hi, ${name}!`
– ${name} replaced by value of name

CSE 331 Fall 2020 33

Boolean type

• Any value can be used in an “if”
– “falsey” values: false, 0, NaN, “”, null, undefined
– “truthy” values: everything else (including true !)

• As expected: &&, ||, !

CSE 331 Fall 2020 34

Arrays

let empty = []
let names = ["bart", "lisa"]
let stuff = ["wookie", 17, false]
stuff[6] = 331 // in-between undefined

• Access elements with subscripts as usual
• push, pop, shift, unshift, length, …

CSE 331 Fall 2020 35

Objects

• Everything other than number, string, boolean, null,
and undefined are mutable Objects

• A JavaScript object is a set of name/value pairs:
character = { name: "Lisa Simpson",

age: 30 }

• Reference properties in two different ways:
character.age = 7
character[“age”] = 7

CSE 331 Fall 2020 36

Objects

• Objects are basically HashMaps (well, almost)

• Add and remove properties as you like

character.instrument = "horn"
delete character.age

CSE 331 Fall 2020 37

Objects

• Quotes are optional in object literals:

let obj = {a: 1, “b”: 2};

• But be careful:

let x = “foo”;
console.log({x: x}); // {“x”: “foo”}

CSE 331 Fall 2020 38

Equality

• Equality is complicated in any language

• JS has two versions: === (strict); == (loose)
– ===, !== check both types and values
– == and != can surprise you with conversions

•7 == "7" is true!

• Object equality is reference equality
– have to compare arrays yourself

CSE 331 Fall 2020 39

Functions

• Named functions:

function average(x, y) {
return (x + y) / 2;

}

• Anonymous (lambda) functions:

let f = function (x) { return x+1; }
let g = (x) => { return x+1; }
let h = (x, y) => (x + y) / 2;

CSE 331 Fall 2020 40

more
later…

No type constraints!

function average(x, y) {
return (x + y) / 2;

}

• No surprise
let result = average(6,7); // 6.5

• But then…
let answer = average("6","7"); // 33.5!

CSE 331 Fall 2020 41

Functions are values

• JavaScript is a functional language
– functions can be stored as values of variables,

passed as parameters, and so on
– lots of powerful techniques (cf CSE 341); we won’t

cover for the most part

let f = average
let result = f(6, 7) // result is 6.5
f = Math.max
result = f(6,7) // result is 7

CSE 331 Fall 2020 42

Higher-level Functions

• Functions can be passed as parameters
function compute(f) {
return f(2,3);

}

compute((a,b) => a+b); // 5
compute((a,b) => a*b); // 6

CSE 331 Fall 2020 43

JavaScript console

Every browser has developer tools including the console,
details about web pages and objects, etc.

A JS program can use console.log("message"); to
write a message to the console for debugging, recording, etc.

– “printf debugging” for JavaScript programs

In Chrome, right-click on a web page and select Inspect or
pick View > Developer > Developer Tools from the menu.
Click the console tab and you can see output that’s been
written there, plus you can enter JavaScript expressions and
evaluate them. Super useful for trying things out.

console.html
CSE 331 Fall 2020 44

Resources

• Lectures will (try to) point out key things
• For more: start with Mozilla (MDN) JavaScript tutorial:

– https://developer.mozilla.org/en-US/docs/Web/JavaScript
• CodeAcademy has a good, free JavaScript basics course

• Be real careful about web searches – the JavaScript/ webapp
ecosystem has way too many somewhat-to-totally incompatible
or current vs. obsolete ways of doing similar things. Code
snippets from the web may lead you way off.

CSE 331 Fall 2020 45

CLASSES IN JS

Classes

• JavaScript (until recently) has no classes!
– but it is still an object-oriented language

• We can do some of what we need already:

let obj = {f: (x) => x + 1};
console.log(obj.f(2)); // 3

• Problem: how would a method update the state
(other fields) of the object?

CSE 331 Fall 2020 47

this

• In expression obj.method(…):
– obj is secretly passed to method
– can be accessed using keyword this

• So this works properly:

let obj = {
a: 3,
f: (x) => x + this.a

};
console.log(obj.f(2)); // 5

CSE 331 Fall 2020 48

this

• You can explicitly pass the this argument using the
call method on a function object:

let obj = {
a: 3,
f: function (x) { return x + this.a; }

};
console.log(obj.f.call(obj, 2)); // 5

CSE 331 Fall 2020 49

this

• this only passed if you have “obj.” before method(…)

function compute(f) {
return f(2); // no “obj.” so no “this”

}
let obj = {
a: 3,
f: function (x) { return x + this.a; }

};
console.log(compute(obj.f));

CSE 331 Fall 2020 50

// NaN!

Why should I care about this?

• We can add listener functions to components,
but they don’t know to pass this!

• This will not work:

btn.addEventListener(“click”, obj.foo)

• obj.foo produces a function, which it calls,
but at that point it’s a regular function
– this is only passed if you put (…) right after it

CSE 331 Fall 2020 51

How to fix this

• You can produce a function with this already set by
using the bind method of a function object:

btn.addEventListener(“click”,
foo.bind(obj))

• Inside of another method (where this is already set)
the => lambda syntax does this automatically:

btn.addEventListener(“click”,
evt => this.onClick(evt))

CSE 331 Fall 2020 52

