
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2020

Abstract Data Types (ADTs)

Outline

Previously looked at writing specifications for methods.
The situation gets more complex with object-oriented code...

This lecture:
1. What is an Abstract Data Type (ADT)?
2. How to write a specification for an ADT
3. Design methodology for ADTs

Next lecture(s):
• Documenting an implementation of an ADT

2CSE 331 Fall 2020

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Often best to start your design by designing data...

3CSE 331 Fall 2020

CSE 331 Fall 2020 4

Bad programmers worry about
the code. Good programmers
worry about data structures and
their relationships.

-- Linus Torvalds

Show me your flowcharts and
conceal your tables, and I shall
continue to be mystified. Show
me your tables, and I won’t
usually need your flowcharts;
they’ll be obvious.

-- Fred Brooks

Designing Around Data

Brooks says it is enough to decide what your data looks like
– (don’t even need to say how it is organized)
– can figure out the data structures & code from that

In fact, even that is possibly too detailed...
– all we really need to know is what operations we need to

perform with the data

5CSE 331 Fall 2020

CSE 331 Fall 2020 6

An abstract data type defines a class
of abstract objects which is completely
characterized by the operations
available on those objects …

When a programmer makes use of an
abstract data object, he [sic] is
concerned only with the behavior
which that object exhibits but not with
any details of how that behavior is
achieved by means of an
implementation…

Programming with Abstract Data Types
by Barbara Liskov and Stephen Zilles

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Often best to start your design by designing data
– first, what operations will be permitted on the data (for clients)
– next, decide how data be organized (data structures)

• see CSE 332 & CSE 344
– lastly, write the code

7CSE 331 Fall 2020

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem

Hard to always choose the right data structures ahead of time:
– hard to know ahead of time what will be too slow
– programmers are “notoriously” bad at this (Liskov)

ADTs give us the freedom to change data structures later on
– data structure details are hidden from the clients

8CSE 331 Fall 2020

Procedural and data abstractions

Procedural abstraction:
– abstract from implementation details of procedures (methods)
– specification is the abstraction
– satisfy the specification with an implementation

Data abstraction:
– abstract from details of data representation
– also a specification mechanism
– way of thinking about programs and design

Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s
– one of the fundamental ideas of computer science

9CSE 331 Fall 2020

Is everything an ADT?

• Purpose of an ADT is to abstract the representation details

• Not every class is trying to hide its representation details
– some classes expose every field via getters
– some representations are very unlikely to change
– some classes do not have a representation

• they are more “processes” than data
• client may give it data but no data is exposed

• Example: Pair with fields first and second
• Example: PrinterController with various print methods

10CSE 331 Fall 2020

ADTs in Java

An ADT is a set of operations

ADT abstracts from the organization to meaning of data
• details of data structures are hidden from the client
• client see only the operations that provided

12CSE 331 Fall 2020

An ADT is a set of operations

ADT abstracts from the organization to meaning of data
• details of data structures are hidden from the client
• client see only the operations that provided

class RightTriangle {
float base, altitude;

}

class RightTriangle {
float base, hypot, angle;

}

13CSE 331 Fall 2020

Instead, think of a type as a set of operations
create, getBase, getArea, …

Force clients to use operations to access data

Are these classes the same?

class Point { class Point {
public float x; public float r;
public float y; public float theta;

} }

Different Details: cannot replace one with the other in a program

Same Concept: both classes implement the concept “2D point”

Goal of Point ADT is to express the sameness:
– clients should depend only on the concept “2D point”
– achieve this by specifying operations not the representation
– write clients that can work with either representation

14CSE 331 Fall 2020

rest of
program

abstraction
barrier

Abstract data type = objects + operations

We call this an “abstraction barrier”
– a good thing to have and not cross (a.k.a. violate)
– prevents clients from depending on implementation details

clients implementation

15CSE 331 Fall 2020

Point
create

translate
scale

Benefits of ADTs

If clients are forced to respect data abstractions, ...

• Can change how data is stored (and data structures)
– fix bugs
– improve performance

• Can also change algorithms

• Can delay decisions on how ADT is implemented

CSE 331 Fall 2020 16

Concept of 2D point, as an ADT
class Point {
// A 2D point exists in the plane, ...
public float x();
public float y();
public float r();
public float theta();

// ... can be created, ...
public Point(); // new point at (0,0)
public Point centroid(Set<Point> points);

// ... can be moved, ...
public void translate(float delta_x,

float delta_y);
public void scaleAndRotate(float delta_r,

float delta_theta);
}

17

Observers / Getters

Creators /
Producers

Mutators

CSE 331 Fall 2020

Specifying an ADT

Mutable

1. overview
2. abstract state
3. creators
4. observers
5. producers (rare)
6. mutators

Immutable

1. overview
2. abstract state
3. creators
4. observers
5. producers
6. mutators

• Creators: return new ADT values (e.g., Java constructors)
• Observers / Getters: Return information about an ADT
• Producers: ADT operations that return new values
• Mutators: Modify a value of an ADT

CSE 331 Fall 2020 18

Specifying an ADT

Mutable

1. overview
2. abstract state
3. creators
4. observers
5. producers (rare)
6. mutators

Immutable

1. overview
2. abstract state
3. creators
4. observers
5. producers
6. mutators

• Should have no information about the implementation
– (latter called the “concrete representation”)
– leave ourselves free to change it later

• A collection of procedural abstractions — not procedures
CSE 331 Fall 2020 19

Specifying an ADT

• Need a way write specifications for these procedures
– need a vocabulary for talking about what the operations do
– need to avoid referencing the actual implementation

• Use “math” (when possible) not actual fields to describe the state
– abstract description of a state is called an abstract state
– describes what the state “means” not the implementation

• give clients an abstract way to think about the state
– each operation described in terms of “creating”, “observing”,

“producing”, or “mutating” the abstract state

20CSE 331 Fall 2020

Poly, an immutable datatype: overview
/**
* A Poly is an immutable polynomial with
* integer coefficients. A typical Poly is
* c0 + c1x + c2x2 + ...
*/
class Poly {

Overview
– defines the abstract states for use in operation specifications

21

Abstract state

CSE 331 Fall 2020

Notes on overview

Overview
– state if immutable (default not)
– define abstract states for use in operation specifications

• difficult and vital!
• appeal to math if appropriate
• never make reference to concrete representation

– give an example (reuse it in operation definitions)

22CSE 331 Fall 2020

Poly: creators

// effects: makes a new Poly = 0
public Poly()

// effects: makes a new Poly = cxn

// throws: NegExponent if n < 0
public Poly(int c, int n)

Creators
– creates a new object

Note: Javadoc above omits many details...
– should be /** ... */ not // ...
– should be @spec.effects not effects

23CSE 331 Fall 2020

Poly: observers

// returns: the degree of this polynomial,
// i.e., the largest exponent with a
// non-zero coefficient.
// Returns 0 if this = 0.
public int degree()

// returns: the coefficient of the term
// of this polynomial whose exponent is d
// throws: NegExponent if d < 0
public int coeff(int d)

Observers
– obtains information about objects of that type

24CSE 331 Fall 2020

“this” means the
abstract state

Notes on observers

Observers

• Never modify the abstract state

• Specification uses the abstraction from the overview

25CSE 331 Fall 2020

Poly: producers

// returns: this + q
public Poly add(Poly q)

// returns: this * q
public Poly mul(Poly q)

// returns: -this
public Poly negate()

Producers
– creates other objects of the same type

26CSE 331 Fall 2020

Notes on producers

Producers

• Common in immutable types like java.lang.String
– String substring(int offset, int len)

• No side effects
– never modify the abstract value of existing objects

27CSE 331 Fall 2020

Poly, example

Poly x = new Poly(4, 3);
Poly y = new Poly(5, 3);
Poly z = x.add(y);

System.out.println(z.coeff(3)); // prints 9

28CSE 331 Fall 2020

IntSet, a mutable datatype:
overview and creator

// Overview: An IntSet is a mutable,
// unbounded set of integers. A typical
// IntSet is { x1, ..., xn }.
class IntSet {

// effects: makes a new IntSet = {}
public IntSet()

(Note: Javadoc is highly simplified...)

29CSE 331 Fall 2020

IntSet: observers

// returns: true if and only if x in this set
public boolean contains(int x)

// returns: the cardinality of this set
public int size()

// returns: some element of this set
// throws: EmptyException when size()==0
public int choose()

30CSE 331 Fall 2020

IntSet: mutators

// modifies: this
// effects: change this to this + {x}
public void add(int x)

// modifies: this
// effects: change this to this - {x}
public void remove(int x)

Mutators
– modify the abstract state of the object

31CSE 331 Fall 2020

Notes on mutators

Mutators

• Rarely modify anything (available to clients) other than this
– list this in modifies clause

• Typically have no return value
– “do one thing and do it well”
– (sometimes return “old” value that was replaced)

Mutable ADTs may have producers too, but that is less common

32CSE 331 Fall 2020

