
CSE 331
Software Design & Implementation

Kevin Zatloukal
Fall 2020

Lecture 1 – Introduction & Administrivia
(Based on slides by Mike Ernst, Dan Grossman, and many others)

CSE 331 Fall 2020 1



Motivation



What is the goal of CSE 331?

How to build harder-to-build software
• Move from CSE 143 problems toward what you’ll see

in upper-level courses and in industry

Specifically, how to write code of
• Higher quality
• Increased complexity

We will discuss tools and techniques to help with this and the 
concepts and ideas behind them

– There are timeless principles to both
– Widely used across the industry

CSE 331 Fall 2020 3



What is high quality?

Code is high quality when it is

1. Correct
– Everything else is of secondary importance

2. Easy to change
– Most work is making changes to existing systems

3. Easy to understand
– Needed for 1 & 2 above

CSE 331 Fall 2020 4



How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and 

one black shoe



What is increased complexity?

Analogy to building physical objects:
• 100 well-tested LOC = a nice cabinet
• 2,500 LOC = a room with furniture
• 2,500,000 LOC = 1000 rooms ≈

CSE 331 Fall 2020 6

North Carolina class WW2 battleship



CSE 331 Fall 2020 7

≈
the entire British Naval fleet in WW2



Actually, software is more complex…

• Every bit of code is unique, individually designed
–US built 10 identical Essex carriers

–Software equivalent would be one carrier 10 times as large:

• Defects can be even more destructive
– A defect in one room can sink the ship
– But a defective OS could sink the whole fleet

CSE 331 Fall 2020 8



Scale makes everything harder

Modularity makes scale possible but it’s still hard…
• Time to write N-line program grows faster than linear

– Good estimate is O(N1.05) [Boehm, ‘81]
• Bugs grow like Θ(N log N) [Jones, ‘12]

– 10% of errors are between modules [Seaman, ‘08]
• Communication costs dominate schedules [Brooks, ‘75]
• Small probability cases become high probability cases

– Corner cases are more important with more users

CSE 331 Fall 2020 9

Corollary: quality must be even higher, per line, in 
order to achieve overall quality in a large program



People Do Build Great Software

Full scope of the challenge:
• software is built by people, who make mistakes all the time
• surprisingly difficult to get even a small program to work
• needed to write hundreds of millions of lines of code
• each line gets harder to write as the program scale

Despite those challenges, we have lots of software that works
• hundreds of millions of lines of working programs
• products rarely fail because the software is too buggy

How do we do it?

CSE 331 Fall 2020 10



How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and 

one black shoe

Key insights:
– Can’t stop people from making mistakes
– Can stop mistakes from getting to users



How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– Type checkers, test runners, etc.

2. Inspection
– Think through your code carefully
– Have another person review your code

3. Testing
– Usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Fall 2020 12



How do we cope with complexity?

We tackle complexity with modularity
• Split code into pieces that can be built independently
• Each must be documented so others can use it
• Also helps understandability and changeability

CSE 331 Fall 2020 13



What is high quality code?

In summary, we want our code to be:

1. Correct
2. Easy to change
3. Easy to understand
4. Easy to scale (modular)

These qualities also allow for increased complexity

CSE 331 Fall 2020 14



What we will cover in CSE 331

• Everything we cover relates to the 4 goals
• We’ll use Java but the principles apply in any setting

CSE 331 Fall 2020 15

Correctness
1. Tools

• Git, IntelliJ, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• event-driven programming, MVC, GUIs

Changeability
• specifications, ADTs
• listeners & callbacks

Understandability
• specifications, ADTs
• Adv. Java: exceptions
• subtypes


