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Motivation



What is the goal of CSE 331?

How to build harder-to-build software
• Move from CSE 143 problems toward what you’ll see

in upper-level courses and in industry

Specifically, how to write code of
• Higher quality
• Increased complexity

We will discuss tools and techniques to help with this and the 
concepts and ideas behind them

– There are timeless principles to both
– Widely used across the industry

CSE 331 Fall 2020 3



What is high quality?

Code is high quality when it is

1. Correct
– Everything else is of secondary importance

2. Easy to change
– Most work is making changes to existing systems

3. Easy to understand
– Needed for 1 & 2 above
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How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and 

one black shoe



What is increased complexity?

Analogy to building physical objects:
• 100 well-tested LOC = a nice cabinet
• 2,500 LOC = a room with furniture
• 2,500,000 LOC = 1000 rooms ≈
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North Carolina class WW2 battleship
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≈
the entire British Naval fleet in WW2



Actually, software is more complex…

• Every bit of code is unique, individually designed
–US built 10 identical Essex carriers

–Software equivalent would be one carrier 10 times as large:

• Defects can be even more destructive
– A defect in one room can sink the ship
– But a defective OS could sink the whole fleet
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Scale makes everything harder

Modularity makes scale possible but it’s still hard…
• Time to write N-line program grows faster than linear

– Good estimate is O(N1.05) [Boehm, ‘81]
• Bugs grow like Θ(N log N) [Jones, ‘12]

– 10% of errors are between modules [Seaman, ‘08]
• Communication costs dominate schedules [Brooks, ‘75]
• Small probability cases become high probability cases

– Corner cases are more important with more users
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Corollary: quality must be even higher, per line, in 
order to achieve overall quality in a large program



People Do Build Great Software

Full scope of the challenge:
• software is built by people, who make mistakes all the time
• surprisingly difficult to get even a small program to work
• needed to write hundreds of millions of lines of code
• each line gets harder to write as the program scale

Despite those challenges, we have lots of software that works
• hundreds of millions of lines of working programs
• products rarely fail because the software is too buggy

How do we do it?
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How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and 

one black shoe

Key insights:
– Can’t stop people from making mistakes
– Can stop mistakes from getting to users



How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– Type checkers, test runners, etc.

2. Inspection
– Think through your code carefully
– Have another person review your code

3. Testing
– Usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%
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How do we cope with complexity?

We tackle complexity with modularity
• Split code into pieces that can be built independently
• Each must be documented so others can use it
• Also helps understandability and changeability
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What is high quality code?

In summary, we want our code to be:

1. Correct
2. Easy to change
3. Easy to understand
4. Easy to scale (modular)

These qualities also allow for increased complexity
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What we will cover in CSE 331

• Everything we cover relates to the 4 goals
• We’ll use Java but the principles apply in any setting
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Correctness
1. Tools

• Git, IntelliJ, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• event-driven programming, MVC, GUIs

Changeability
• specifications, ADTs
• listeners & callbacks

Understandability
• specifications, ADTs
• Adv. Java: exceptions
• subtypes


