
CSE 331	STAFF

Section	6:
Dijkstra’s	Algorithm	&	

HW7

Homework	7
Modify	your	graph	to	use	generics
◦ Will	have	to	update	HW	#5	and	HW	#6	tests
◦ discussed	in	lecture	on	Friday	(and	Monday)

Implement	Dijkstra’s	algorithm	for	shortest	paths	in	weighted graphs
◦ Note:	This	should	not	change	your	implementation	of	Graph.	Dijkstra’s	is	
performed	on a	Graph,	not	within a	Graph.

◦ discussed	in	section	(now)

Rest	(test	driver,	etc.)	as	in	HW6

HW7	Overview

Homework	7
Create	a	weighted graph	between	Marvel	characters
◦ labels	on	the	edges	are	numbers	called	“weights”

The	weight	of	an	edge	is	equal	to	the	inverse	of	how	many	comic	books	
the	characters	appeared	in	together
◦ Ex:	if	Amazing	Amoeba	and	Zany	Zebra	appeared	in	5	comic	books	together,	
the	weight	of	their	edge	would	be	1/5

The	more	well-connected	two	characters	are,	the	lower	the	weight
◦ path	in	this	graph	will	have	shorter	length	(less	total	weight)	if	adjacent	
characters	along	the	path	appeared	frequently	together

Graph	Activity
List	the	Characters	set,	the	Books->Characters	map,	and	draw	the	graph	
using	these	characters	and	“books”.
Harry				HP1

Harry				HP2

Harry				HP3

Harry				HP4

Quirrel HP1

Scabbers HP1

Scabbers HP2

Voldemort	HP4

Voldemort	SharedAHead

Quirrel SharedAHead

Graph	Activity	Answers
Characters

Harry,	Quirrel,	Scabbers

Books	->	Characters

HP1	->	Harry,	Quirrel,	Scabbers

HP2	->	Harry,	Scabbers,

HP3	->	Harry

HP4	->	Harry,	Voldemort

SharedAHead ->	Voldemort,	Quirrel

Graph	Activity	Answers
Vol

Har Qui

Sca

1
1

1

1/2 1

Hw7	Test	script	Command	
Notes
HW7 LoadGraph command	is	slightly	different	from	HW6
◦ After	graph	is	loaded,	there	should	be	at	most	one	directed	edge	from	one	
node	to	another,	with	the	edge	label	being	the	multiplicative	inverse	of	the	
number	of	books	shared

◦ Example:	If	8	books	are	shared	between	two	nodes,	the	edge	label	will	be	
1/8

◦ Since	the	edge	relationship	is	symmetric,	there	would	be	another	edge	going	
the	other	direction	with	the	same	edge	label

Dijkstra’s	
Algorithm

Review:	Shortest	Paths	with	BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D <B,D> 1

E <B,D,E> 2

From	Node	B

A

B

C D

E

1

1

1

11

1

1

Review:	Shortest	Paths	with	BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D <B,D> 1

E <B,D,E> 2

From	Node	B

A

B

C D

E

1

1

1

11

1

1

Shortest	Paths	with	Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D <B,A,C,D> 7

E <B,A,C,E> 7

From	Node	B
2

100

2

62

3

100

Paths	are	not	the	same!

Shortest	Paths	with	Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D <B,A,C,D> 7

E <B,A,C,E> 7

From	Node	B
2

100

2

62

3

100

Paths	are	not	the	same!

Goal:	Smallest	
cost?	Or	fewest	
edges?

BFS	with	weights
Why	doesn’t	BFS	work	correctly	with	weighted	edges?

Consider	the	code	again:

{{	Inv:	list	contains	all	nodes	reachable	from	start
by	passing	only	through	nodes	list[0],	...,	list[i-1]
in	order	by	their	distance	from	start	}}

while	i <	list.length:
add	children	of	list[i]	not	already	in	list	to	the	end
i =	i +	1

Distance	of	new	nodes	is	1	+	distance	of	list[i]
Distance	of	earlier	nodes	is	1	+	distance	of	list[j]	for	some	j	<	i
And	we	have	distance	to	list[j]	<	distance	to	list[i]	by	Inv

BFS	with	weights
Why	doesn’t	BFS	work	correctly	with	weighted	edges?

What	happens	if	edges	have	weights?

Distance	of	new	nodes	is	w	+	distance	of	list[i]	for	some	weight	w
Distance	of	earlier	nodes	is	w’	+	distance	of	list[j]	for	some	j	<	i

distance	to	list[j]	<	distance	to	list[i]...

implies	1	+	distance	to	list[j]	<	1	+	distance	to	list[i]

BUT	does	not	imply	w’	+	distance	to	list[j]	<	w	+	distance	to	list[i]
since	w’	could	be	much	bigger	than	w

BFS	with	weights
How	do	we	fix	this?

Actually,	the	invariant	is	still	fine!	But	the	body	doesn’t	preserve	it:

{{	Inv:	list	contains	all	nodes	reachable	from	start
by	passing	only	through	nodes	list[0],	...,	list[i-1]
in	order	by	their	distance	from	start	}}

while	i <	list.length:
add	children	of	list[i]	not	already	in	list	to	the	end
i =	i +	1

Problems:
1. new	nodes	do	not	necessarily	go	at	the	end of	the	list
2. could	discover	a	shorter	path	to	a	node	in	the	list	already

BFS	with	Queue
In	HW6	version	of	BFS:

◦ keep	reachable	elements	in	a	set
◦ only	need	the	ability	to	see	if	we	have	found	them	already

◦ keep	list[i],	list[i+1],	...	in	a	queue
◦ only	remove	from	front	and	add	to	end

Need	to	replace	queue	with	something	that	can	allow	new	
elements	to	end	up	in	the	middle,	not	just	at	end...

Priority	Queue
Priority	queue	is	like	a	queue
BUT	returns	elements	in	order	instead	of	FIFO

Two	ways	to	provide	order	for	Java’s	PriorityQueue:
1. Comparable

a) class	Node	implements	Comparable<Node>
b) public	int	compareTo(other)

2. Comparator
a) class	NodeComparator	extends	Comparator<Node>
b) new	PriorityQueue(new	NodeComparator())	

Priority	Queue	Example
Suppose	Q	=	[4,	8]	is	a	priority	queue

Q.add(3);
Q.add(5);

Q	=	[3,	4,	5,	8]

x	=	Q.remove();

Q	=	[4,	5,	8]
x	=	3

Dijkstra’s	Algorithm
◦ Uses	a	priority	queue	instead	of	a	queue

◦ Elements	in	the	priority	queue	are	paths not	nodes
◦ different	paths	to	different	non-visited	nodes
◦ allow	for	multiple	paths	to	each	non-visited	node

◦ Paths	are	ordered	in	queue	by	length	(total	weight)
◦ shorter	paths	are	removed	earlier	from	the	queue

Inputs: start = starting node

let Q = priority queue of paths ordered by length

let V = set of visited nodes (shortest paths already found)

add a path from start to itself to Q

// Inv: found shortest to each node in V

// Q contains all paths of the form p + e, where

// p is a shortest path to a visited node and

// e is an edge to a non-visited node

while Q is non-empty:

let path = Q.remove()

let dest = final node of path

if dest not in V:

add dest to V

for each edge e = <dest, child>:

if child is not in V:

let newPath = path + e

add newPath to Q

Pseudocode	with	Priority	Queue

Dijkstra’s	Algorithm
Is	Inv preserved	by	loop	body?
◦ invariant	for	Q	requires	adding	each	path	of	the	form	p	+	e
◦ invariant	for	V	requires	that	path	found	is	the	shortest	path

Claim:	path	found	is	a	shortest	path		(out	of	scope)
◦ suppose	there	was	a	shorter	path	to	the	same	node
◦ can	assume	it	is	of	the	form	p’	+	e’	where	end	of	p’	is	visited
◦ in	general,	the	path	must	be	of	the	form	p’	+	e1 +	e2 +	...	+	ek,	for	some	ei’s,	but	the	
path	can	only	get	shorter	if	we	drop	e2 +	...	+	ek

◦ thus,	Inv tells	us	that	p’	+	e’	is	also	in	the	queue
◦ fact	that	p	+	e	was	removed	before	p’	+	e’	means	p	+	e	is	shorter
◦ contradiction

Reminder
Loop	invariants	get	more	important	
as	the	algorithms	get	more	complex

A B

D
C

F H

E

G

0 ¥ ¥ ¥

¥

¥

¥

¥

2 2 3

110 2
3

111

7

1
9
2

4 5

Order	Added	to	Visited Set:

Example	#1

vertex visited? cost path
A Y 0
B
C
D
E
F
G
H

Goal: Fully explore
the graph

A B

D
C

F H

E

G

0 2 ¥ ¥

4

1

¥

¥

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited Set:

A

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E
F
G
H

A B

D
C

F H

E

G

0 2 ¥ ¥

4

1 ¥

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E
F
G
H

¥

A B

D
C

F H

E

G

0 2 ¥ ¥

4

1

12

¥

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F
G
H

A B

D
C

F H

E

G

0 2 ¥

4

1

12

¥

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F
G
H

¥

A B

D
C

F H

E

G

0 2 4 ¥

4

1

12

¥

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G
H

A B

D
C

F H

E

G

0 2 4 ¥

4

1 ¥

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B,	D

12

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G
H

A B

D
C

F H

E

G

0 2 4

4

1 ¥

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B,	D,	F

12

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H

¥

A B

D
C

F H

E

G

0 2 4 7

4

1 ¥

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B,	D,	F

12

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H ≤ 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B,	D,	F,	H

12

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H Y 7 F

¥

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B,	D,	F,	H

12

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B,	D,	F,	H,	G

12

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

12
3

7

9
2

4 5

Order	Added	to	Visited	Set:

A,	C,	B,	D,	F,	H,	G

11

3

10

111

1

Example	#1

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2

12
3

7

9
2

4

vertex visited? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order	Added	to	Visited	Set:

A,	C,	B,	D,	F,	H,	G,	E

3

10

111

1

Example	#1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9

2

4 5

Interpreting	the	Results
vertex visited? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

2 2 3

1
3

1
4

A B

C
D

F

E

G

0 ¥

¥

¥

¥

¥

¥

2

1
2 5

1
1

1

2 6
5 3

10

Order	Added	to	Visited	Set:

Example	#2

vertex visited? cost path
A Y 0
B
C
D
E
F
G

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2 5

1
1

1

2 6
5 3

10

Order	Added	to	Visited	Set:

A,	D,	C,	E,	B,	F,	G

Example	#2

vertex visited? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

