
Page 1 of 8

CSE 331 Winter 2019 Midterm Exam

Name __

UW Email: ________________________________ @uw.edu

The exam is closed book and closed electronics. One page of notes is allowed.

Please wait to turn the page until everyone is told to begin.

Score: ________________ / 65

1. _____________ / 10

2. _____________ / 10

3. _____________ / 10

4. _____________ / 12

5. _____________ / 11

6. _____________ / 12

Bonus: _________ / 4

Page 2 of 8

Problem 1 (Reasoning I)

Consider the following code, which takes an integer x as input and returns the smallest
power of 10 that is larger than x. For example, if x = 12, it would return 100.

{{ x > 0 }}
int nextPowerOf10(int x) {
 int k = 1;

 {{ Inv: k is a power of 10 and satisfies k <= 10x }}
 while (x >= k)
 k = 10 * k;

 {{ k is a power of 10 and satisfies x < k <= 10x }}
 return k;
}

Answer the following questions to explain why the loop is correct. Be concise. Please!
(All three parts have short answers that are fully correct.)

Why does the loop invariant hold initially?

Inv holds initially because k = 1 is a power of 10 and we have k = 1 < 10 <= 10x
(since x >= 1).

Why does the body of the loop preserve the loop invariant?

Since k <= x, we know that 10k <= 10x. The latter is what we need since the loop
changes k to 10k. Changing k to 10k also maintains that k is power of 10.

Why is the postcondition true when the loop exits?

 Upon exit we have Inv and x < k, which is exactly the postcondition.

Page 3 of 8

Problem 2 (Reasoning II)

Fill in an implementation of the method removeDups. It takes as input a sorted array a
containing at least n integers and writes into b the set of distinct elements from a, also
in sorted order.

The invariant for the loop is mostly provided for you. Do not add any additional loops.

You do not need to turn in a complete proof of correctness, but you should complete
one since your code will be graded on correctness.

{{ P: a, b != null and 0 < n <= a.length, b.length }}
int removeDups(int[] a, int[] b, int n) {
 int i = 0;
 int j = 0;

 b[0] = a[0];

 {{ Inv: P and b[0], ..., b[i] holds the distinct elements of a[0], ..., a[j] in sorted order
 and i, j >= 0 }}

 while (j+1 != n) {
 if (a[j+1] != a[j]) {
 b[i+1] = a[j+1];
 i = i + 1;
 }

 j = j + 1;
 }

 {{ b[0], ..., b[i] holds the distinct elements of a[0], ..., a[n-1] in sorted order }}
 return i+1;
}

Bonus: Why is the second line of the loop invariant necessary? Specifically, what could
go wrong in the proof if we removed that?

We could intialize with i = j = -1 and then the code would fail on the first iteration.

Page 4 of 8

Problem 3 (Specifications)

Complete in the JavaDoc documentation for the removeDups method from the
previous page. You may skip the @param tags.

/**
 * Copies the unique elements from the sorted array stored in
 * a[0], a[1], ..., a[n-1] into the beginning of the array b.
 * @param(s) omitted
 * @requires a, b != null and 0 < n <= a.length, b.length and
 * a is sorted
 * @modifies b
 * @effects Copies the unique elements of a into the start of b
 * @return The length of the prefix of b written.
 *
 *
 */
public int removeDups(int[] a, int[] b, int n)

Suppose that the author wants to change the specification so that a is no longer
required to be sorted. Instead, she will sort the array herself in removeDups. However,
suppose that she also wants to leave herself room to change the implementation in the
future to no longer use sorting (perhaps she will use a hash table instead).

How would she change the specification above for this scenario? You only need to write
the lines that should change.

@requires a, b != null and 0 < n <= a.length, b.length (optional)

@modifies a, b

How does this new specification relate to the first one above?1

 stronger weaker incomparable
 (this one if optional not included)

Suppose that author then wanted to change the specification to no longer use the
parameter n. Instead, it would use the length of the array a in its place.

How would that specification relate to the first one above?

 stronger weaker incomparable

																																																								
1	If	you	don't	remember	the	right	word,	just	say	whether	implementations	of	the	new	specification	necessarily	
satisfy	the	first	specification	or	vice	versa	or	neither.	

Page 5 of 8

Problem 4 (ADTs)

Consider the following class:

/** Represents a rectangle with positive area. Each one can
 * be thought of as a pair (width, height), containing the width
 * and height of the rectangle, respectively. For example, the
 * pair (10, 5) is a rectangle with width 10, height 5, and
 * hence, an area of 50 (since area = width * height). */
public class Rectangle

The author expects the usage of the class to be dominated by calls to get the area, so
she decides to directly store the area in her concrete representation.

Fill in the documentation of this representation below:

// RI: base > 0 and area > 0
// AF(this) = (base, 2 * area / base)
private int base;
private int area;

Give an implementation of the equals method for this class that is not only correct but
also follows the usual Java idiomatic form for equals:

@Override
public boolean equals(Object o) {
 if (!(o instanceof Triangle))
 return false;
 Triangle t = (Triangle) o;
 return base == t.base && area == t.area;
}

Give an implementation of the hashCode method that satisfies the normal specification
but does not distinguish all Rectangles that are unequal.

@Override
public int hashCode() {
 return area; // or width or area/width or 1
}

Page 6 of 8

Problem 5 (Testing)

Consider the following method:

/** @requires 0 <= x <= 59
 * @return "top" if x is < 15 or >= 45 and otherwise "bottom"
String halfOfHour(int x)

Fill in the templates below to describe three tests for the method above that are from
distinct subdomains according to the specification testing heuristic:

 On input x = _________________10___________________

 Expect output ________________"top"_________________

 On input x = __________________50__________________

 Expect output _________________"top"________________

 On input x = __________________30__________________

 Expect output _________________"bottom"_____________

List six different inputs that should be tested for checking important boundary cases
(just list the values for "x" not the expected outputs):

 0, 14, 15, 44, 45, and 59

(problem continued on the next page...)

Page 7 of 8

Suppose that the method is implemented as follows:

String halfOfHour(int x) {
 if (x / 10 == 0 || x / 10 == 5) {
 return "top";
 } else if (x / 10 == 1) {
 if (x - 10 < 5)
 return "top";
 else
 return "bottom";
 } else if (x / 10 == 4) {
 if (x - 40 < 5)
 return "bottom";
 else
 return "top";
 } else {
 return "bottom";
 }
}

Fill in the templates below to describe seven tests for the method above that are from
distinct subdomains according to the implementation testing heuristic:

 On input x = _________________5___________________

 Expect output ________________"top"________________

 On input x = _________________12__________________

 Expect output ________________"top"________________

 On input x = _________________17__________________

 Expect output ________________"bottom"_____________

 On input x = _________________42__________________

 Expect output ________________"bottom"_____________

 On input x = _________________47__________________

 Expect output ________________"top"________________

 On input x = _________________30__________________

 Expect output ________________"bottom"_____________

Page 8 of 8

Problem 6 (Miscellaneous)

Write a one sentence (or shorter) answer to each of the following questions.

1. Describe a bug that would be caught by adding the @Override annotation.

 Defining equals(Duration) instead of equals(Object).

2. Describe a bug that would be caught by adding a call to checkRep at the beginning
of your methods (even though it was already called at the end of those methods).

 Client mutating the representation (via representation exposure)
 in a way that breaks the representation invariant.

3. Describe a bug that cannot occur if you never define a method where adjacent
arguments (in the arguments list) have the same type.

 Client mixing up the order of those arguments.

4. Describe a bug that cannot occur if, instead of returning a reference to an object
held in a private field of your class, you return a reference to a fresh copy.

 Same as 2 above.

5. Describe a bug that cannot occur if you only use immutable objects as the keys in a
Map collection.

 Mutating a key to make it disappear from the map.

6. The .test files of many student submissions for HW5 part 1 contained typos (e.g.,
writing "ListNode" instead of "ListNodes"). Which of the approaches discussed in
class would be most effective at eliminating those mistakes?

 tools inspection

 testing defensive programming

