
CSE 331
Software Design & Implementation

Dan Grossman
Autumn 2019

Course Wrapup

Today

• Reminder: Fill out your course evaluations (!)

• Final exam information

• A look back at CSE 331
– High-level overview of main ideas and goals
– Connection to homeworks
– Context

• Also:
– Thank-yous

• Project demos

• Maybe: “Ask Dan Anything”

UW CSE 331 Autumn 2019 2

Final exam information

• Monday, 8:30-10:20, here

• Comprehensive but biased towards the 2nd half of the course

• Old exams on the web
– Some questions won’t apply if we didn’t do similar things this

quarter; also React/JS is pretty new

• See email for more information and review-session information

UW CSE 331 Autumn 2019 3

CSE 331

What was it all about?

But first….

UW CSE 331 Autumn 2019 4

Huge thanks to the folks who made it work

5UW CSE 331 Autumn 2019

Course staff: Ten Amazing TAs

This course is itself a sophisticated
(or at least really, really complicated) system
requiring savvy design and implementation

And a big thanks to you for all you’ve done!

4 slides from Lecture 1…

UW CSE 331 Autumn 2019 6

What is the goal of CSE 331?

How to build harder-to-build software
• Move from CSE 143 problems toward what you’ll see in upper-

level CSE courses and in industry

Specifically, how to write code of
• Higher quality
• Increased complexity

We will discuss tools and techniques to help with this
– There are timeless principles to both

CSE 331 Autumn 2019 7

What is high quality code?

In summary, we want our code to be:
1. Correct
2. Easy to change
3. Easy to understand
4. Easy to scale (modular)

These qualities also allow for increased complexity

CSE 331 Autumn 2019 8

What we will cover in CSE 331

• Everything we cover relates to the 4 goals
• We’ll use Java but the principles apply in any setting

CSE 331 Autumn 2019 9

Correctness
1. Tools

• Git, IntelliJ, JUnit, Javadoc, …
• Java libraries: equality & hashing
• Adv. Java: generics, assertions, …
• debugging

2. Inspection
• reasoning about code
• specifications

3. Testing
• test design
• coverage

Modularity
• module design & design patterns
• event-driven programming, MVC, GUIs

Changeability
• specifications, ADTs
• listeners & callbacks

Understandability
• specifications, ADTs
• Adv. Java: exceptions
• subtypes

Back to Goals

• CSE 331 will teach you to how to write correct programs

• What does it mean for a program to be correct?
– Specifications

• What are ways to achieve correctness?
– Principled design and development
– Abstraction and modularity
– Documentation

• What are ways to verify correctness?
– Testing
– Reasoning and verification

10CSE 331 Autumn 2019

Some new slides to tie the pieces together…

UW CSE 331 Autumn 2019 11

Divide and conquer:
Modularity, abstraction, specs

No one person can understand all of a realistic system

• Modularity permits focusing on just one part

• Abstraction enables ignoring detail

• Specifications (and documentation) formally describe behavior

• Reasoning relies on all three to understand/fix errors
– Or avoid them in the first place
– Proving, testing, debugging: all are intellectually challenging

12UW CSE 331 Autumn 2019

How CSE 331 fits together

13

Lectures: ideas

Specifications
Testing
Subtyping
Equality & identity
Generics
Design patterns
Reasoning, debugging
Events
Systems integration

⇒ Assignments: get practice

⇒ Design classes
⇒ Write tests
⇒ Write subclasses
⇒ Override equals, use collections
⇒ Write generic classes
⇒ Larger designs; MVC
⇒ Correctness, testing
⇒ GUIs
⇒ N/A

UW CSE 331 Autumn 2019

What you have learned in CSE 331

Compare your skills today to 10 weeks ago
– Theory: abstraction, specification, design
– Practice: implementation, testing
– Theory & practice: correctness

Bottom line aspiration: Much of what we’ve done would be
easy for you today

This is a measure of how much you have learned

There is no such thing as a “born” programmer!

Genius is 1% inspiration and 99% perspiration.
Thomas A. Edison

UW CSE 331 Autumn 2019 14

What you will learn later

• Your next project can be much more ambitious
– But beware of “second system” effect

• Know your limits
– Be humble (reality helps you with this)

• You will continue to learn
– Building interesting systems is never easy

• Like any worthwhile endeavor
– Practice is a good teacher

• Requires thoughtful introspection
• Don’t learn only by trial and error!

– Voraciously consume ideas and tools

15UW CSE 331 Autumn 2019

What comes next?

Courses
– CSE 403 Software Engineering

• Focuses more on requirements, software lifecycle,
teamwork

– Capstone projects
– Any class that requires software design and implementation

Research
– In software engineering & programming systems
– In any topic that involves software

Having an impact on the world
– Jobs (and job interviews)
– Larger programming projects

UW CSE 331 Autumn 2019 16

Last slide

• System building is fun!
– It’s even more fun when you’re successful!!

• Pay attention to what matters
– Take advantage of the techniques and tools you’ve learned (and

will learn!)

• On a personal note:
– Don’t be a stranger: I love to hear how you do in CSE and

beyond as alumni
– Students are amazing; I believe in you!

• Closing thoughts?

17UW CSE 331 Autumn 2019

	CSE 331�Software Design & Implementation
	Today
	Final exam information
	CSE 331
	Huge thanks to the folks who made it work
	Slide Number 6
	What is the goal of CSE 331?
	What is high quality code?
	What we will cover in CSE 331
	Back to Goals
	Slide Number 11
	Divide and conquer:�Modularity, abstraction, specs
	How CSE 331 fits together
	What you have learned in CSE 331
	What you will learn later
	What comes next?
	Last slide

