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But first...

• HW9 due Wednesday
– Usual late days apply if any left
– Be sure hw5/hw7 tests all pass

• We want to show off a few projects on Friday – please let 
us know if we can use yours! (credited or anonymous)
– Put the appropriate tag on the right commit, etc. – see 

hw9

• Course evals: please fill them out before they disappear 
Sunday
– We changed stuff! We read feedback very carefully!
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What we didn’t do…

CSE331 is almost over… 

• Focus on software design, specification, testing, and 
implementation
– Absolutely necessary stuff for any nontrivial project

• But not sufficient for the real world: At least 2 key missing pieces
– Techniques for larger systems and development teams

• This lecture; yes, fair game for final exam
• Major focus of CSE403

– Usability: interfaces engineered for humans
• Major focus of CSE440 – something you should take!
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Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order
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Architecture

Software architecture refers to the high-level structure of a software 
system

– A principled approach to partitioning the modules and 
controlling dependencies and data flow among the modules

Common architectures have well-known names and well-known 
advantages/disadvantages, just like design patterns

A good architecture ensures:
– Work can proceed in parallel
– Progress can be closely monitored
– The parts combine to provide the desired functionality
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Example architectures

Pipe-and-filter (think: iterators)

Layered (think: levels of abstraction)
Blackboard (think:
callbacks)

Filter Filter Filter SinkSource
pipe pipe pipe pipe

Message 
store

Component

Component Component

Component

Component
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A good architecture allows:

• Scaling to support large numbers of  ______

• Adding and changing features

• Integration of acquired components

• Communication with other software

• Easy customization

– Ideally with no programming

– Turning users into programmers is good

• Software to be embedded within a larger system

• Recovery from wrong decisions

– About technology

– About markets
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System architecture

• Have one!
– Basically lays down communication protocols

• Subject it to serious scrutiny
– At relatively high level of abstraction

• Strive for simplicity
– Flat is good
– Know when to say no
– A good architecture rules things out

• Reusable components should be a design goal
– Software is capital
– This will not happen by accident
– May compete with other goals of the organization (but less 

so in the global view and long-term)
8CSE331 Autumn 2019



Temptations to avoid

• Avoid featuritis
– Costs under-estimated

• Effects of scale discounted
– Benefits over-estimated

• A Swiss Army knife is rarely the right tool
• Avoid digressions

– Infrastructure
– Premature tuning

• Often addresses the wrong problem
• Avoid quantum leaps

– Occasionally, great leaps forward
– More often, into the abyss
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Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order
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Build tools

• Building software requires many tools:
– Java compiler, C/C++ compiler, GUI builder, Device driver 

build tool, InstallShield, web server, database, scripting 
language for build automation, parser generator, test 
generator, test harness 

• Reproducibility is essential
• System may run on multiple devices

– Each has its own build tools
• Everyone needs to have the same toolset!

– Wrong or missing tool can drastically reduce productivity 
• Hard to switch tools in mid-project

If you’re doing work the computer could do for you,
then you’re probably doing it wrong
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Version control (source code control)

• A version control system lets you:
– Collect work (code, documents) from all team members
– Synchronize team members to current source
– Have multiple teams work in parallel
– Manage multiple versions, releases of the software
– Identify regressions more easily

• Example tools:
– Git, Mercurial (Hg), Buck, Subversion (SVN), …

• Policies are even more important
– When to check in, when to update, when to branch and 

merge, how builds are done
– Policies need to change to match the state of the project

• Always pull and diff before you commit
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Bug tracking

• An issue tracking system supports:
– Tracking and fixing bugs
– Identifying problem areas and managing them
– Communicating among team members
– Tracking regressions and repeated bugs 

• Essential for any non-small or non-short project

• Example tools:
JIRA, Bugzilla, Flyspray, Trac, …
Hosted tools (GitLab, GitHub, Sourceforge, …)
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Bug tracking

Need to configure the bug tracking system to match the project
– Many configurations can be too complex to be useful

A good process is key to managing bugs 
– An explicit policy that everyone knows, follows, and believes in

Bug 
found

Prioritize Assign Replicate Examine 

Discover Fix Verify Close 
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Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order
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Scheduling
“More software projects have gone awry for lack of calendar time 
than for all other causes combined.”

-- Fred Brooks, The Mythical Man-Month

Three central questions of the software business:
3. When will it be done?
2. How much will it cost?
1. When will it be done?!?

• Estimates are almost always too optimistic
• Estimates reflect what one wishes to be true
• We confuse effort with progress
• Progress is poorly monitored
• Slippage is not aggressively treated
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Scheduling is crucial but underappreciated

• Scheduling is underappreciated
– Made to fit other constraints

• A schedule is needed to make slippage visible
– Must be objectively checkable by outsiders

• Unrealistically optimistic schedules are a disaster
– Decisions get made at the wrong time
– Decisions get made by the wrong people
– Decisions get made for the wrong reasons

• The great paradox of scheduling:
– Everything takes twice as long as you think
– Hofstadter’s Law: It always takes longer than you expect, 

even when you take into account Hofstadter's Law
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Effort is not the same as progress

Cost is the product of workers and time
– Reasonable approximation: All non-labor costs (everything 

but salary/benefits) are zero (!)
– Easy to track

Progress is more complicated and hard to track

• People don’t like to admit lack of progress
– Progress is mis-estimated
– Think they can catch up before anyone notices

• Design the process and architecture to facilitate tracking
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How does a project get to be one year late?

One day at a time…
• It’s not the hurricanes that get you
• It’s the termites

– Tom missed a meeting
– Mary’s keyboard broke
– The compiler wasn’t updated
– …

If you find yourself ahead of schedule
– Don’t relax
– Don’t add features
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Controlling the schedule

• First, you must have one
• Avoid non-verifiable milestones

– 90% of coding done
– 90% of debugging done
– Design complete

• 100% events are verifiable milestones
– Module 100% coded
– Unit testing successfully complete

• Need critical path chart (Gantt chart, PERT chart – directed 
graphs of which parts of the project depend on others)
– Know effects of slippage
– Know what to work on when
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Milestones

• Milestones are critical keep the project on track
– Policies may change at major milestones
– Check-in rules, build process, etc.

• Some typical milestones (names)
– Design complete
– Interfaces complete / feature complete
– Code complete / code freeze
– Alpha release
– Beta release
– Release candidate (RC)
– FCS (First Commercial Shipment) release
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Dealing with slippage

• People must be held accountable
– Slippage is not inevitable
– Software should be on time, on budget, and on function

• Four options
– Add people – startup cost (“mythical man-month”)
– Buy components – hard in mid-stream
– Change deliverables – customer must approve
– Change schedule – customer must approve

• Take no small slips
– One big adjustment is better than three small ones
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Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order
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How to code and test your design

• You have a design and architecture
– Need to code and test the system

• Key question, what to do when?

• Suppose the system has this module dependency diagram
– In what order should

you address the pieces? A

B

F

C D

G

E
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Bottom-up

• Implement/test children first
– For example: G, E, B, F, C, D, A

• First, test G stand-alone (also E)
– Generate test data as discussed earlier
– Construct drivers

• Next, implement/test B, F, C, D
• No longer unit testing:  using lower-level modules

– A test of module M tests:
• whether M works, and
• whether modules that M calls behave as expected

– When a failure occurs, many possible sources of defect
– Integration testing is hard, irrespective of order
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Building drivers

• Use a person
– Simplest choice, but also worst choice
– Errors in entering data are inevitable
– Errors in checking results are inevitable
– Tests are not easily reproducible

• Problem for debugging
• Problem for regression testing

– Test sets stay small, don’t grow over time
– Testing cannot be done as a background task

• Better alternative:  Automated drivers in a test harness
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Top-down

• Implement/test parents (clients) first
– Here, we start with A

• To run A, build stubs to simulate B, C, and D

• Next, choose a successor module, e.g., B
– Build a stub for E
– Drive B using A

• Suppose C is next
– Can we reuse the stub for E?

(Maybe, but maybe need something different)
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Implementing a stub
• Query a person at a console

– Same drawbacks as using a person as a driver

• Print a message describing the call
– Name of procedure and arguments
– Fine if calling program does not need result

• More common than you might think!

• Provide “canned” or generated sequence of results
– Often sufficient
– Generate using criteria used to generate data for unit test
– May need different stubs for different callers

• Provide a primitive (inefficient & incomplete) implementation
– Best choice, if not too much work
– Look-up table often works
– Sometimes called “mock objects” (ignoring technical definitions?)
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Comparing top-down and bottom-up

• Criteria
– What kinds of errors are caught when?
– How much integration is done at a time?
– Distribution of testing time?
– Amount of work?
– What is working when (during the process)?

• Neither dominates
– Useful to understand advantages/disadvantages of each
– Helps you to design an appropriate mixed strategy
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Catching design errors

• Top-down tests global decisions first
– E.g., what system does
– Most devastating place to be wrong
– Good to find early

• Bottom-up uncovers efficiency problems earlier
– Constraints often propagate downward
– You may discover they can’t be met at lower levels
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What components work, when?

• Bottom-up involves lots of invisible activity
– 90% of code written and debugged
– Yet little that can be demonstrated

• Top-down depth-first
– Earlier completion of useful partial versions

31CSE331 Autumn 2019



Amount of integration at each step

• Less is better

• Top-down adds one module at a time
– When an error is detected, either:

• Lower-level module doesn’t meet specification
• Higher-level module tested with bad stub

• Bottom-up adds one module at a time
– Connect it to multiple modules
– Thus integrating more modules at each step
– More places to look for error
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Amount of work

• Always need test harness

• Top-down
– Build stubs but not drivers

• Bottom-up
– Build drivers but not stubs

• Stubs are usually more work than drivers
– Particularly true for data abstractions

• On average, top-down requires more non-deliverable code
– Not necessarily bad
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Distribution of testing time

• Integration is what takes the time

• Bottom-up gets harder as you proceed
– You may have tested 90% of code

• But you still have far more than 10% of the work left
– Makes prediction difficult

• Top-down effort is more evenly distributed
– Better predictions
– Uses more machine time (could be an issue)

• Because we’re testing overall functionality (even if stubs 
are used)

34CSE331 Autumn 2019



One good way to structure an implementation

• Largely top-down
– But always unit test modules

• Bottom-up
– When stubs are too much work [just implement real thing]
– Low level module that is used in lots of places
– Low-level performance concerns

• Depth-first, visible-first
– Allows interaction with customers, like prototyping
– Lowers risk of having nothing useful
– Improves morale of customers and programmers

• Needn’t explain how much invisible work done
• Better understanding of where the project is
• Don’t have integration hanging over your head
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Test harnesses

• Goals:
– Increase amount of testing over time
– Facilitate regression testing
– Reduce human time spent on testing

• Take input from a file
• Call module being tested
• Save results (if possible)

– Including performance information
• Check results

– At best, is correct
– At worst, same as last time

• Generate reports
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Regression testing

• Ensure that things that used to work still do
– Including performance
– Whenever a change is made

• Knowing exactly when a bug is introduced is important
– Keep old test results
– Keep versions of code that match those results
– Storage is cheap
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Perspective…

• Software project management is challenging
– There are still major disasters – projects that go way over 

budget, take much longer than planned, or are abandoned 
after large investments

– Disasters usually stem from lack of discipline
– Always new challenges; we never build the same thing twice
– We’re better at it than we used to be, but not there yet 

• (is “software engineering” real “engineering”?)

• Project management is a mix of hard and [so-called] soft skills

• We’ve only skimmed the surface
– Next: CSE 403, internship, your startup, ???
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