
CSE 331
Software Design & Implementation

Dan Grossman
Autumn 2019

System Integration and Software Process

But first...

• HW9 due Wednesday
– Usual late days apply if any left
– Be sure hw5/hw7 tests all pass

• We want to show off a few projects on Friday – please let
us know if we can use yours! (credited or anonymous)
– Put the appropriate tag on the right commit, etc. – see

hw9

• Course evals: please fill them out before they disappear
Sunday
– We changed stuff! We read feedback very carefully!

CSE331 Autumn 2019 2

What we didn’t do…

CSE331 is almost over…

• Focus on software design, specification, testing, and
implementation
– Absolutely necessary stuff for any nontrivial project

• But not sufficient for the real world: At least 2 key missing pieces
– Techniques for larger systems and development teams

• This lecture; yes, fair game for final exam
• Major focus of CSE403

– Usability: interfaces engineered for humans
• Major focus of CSE440 – something you should take!

CSE331 Autumn 2019 3

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order

4CSE331 Autumn 2019

Architecture

Software architecture refers to the high-level structure of a software
system

– A principled approach to partitioning the modules and
controlling dependencies and data flow among the modules

Common architectures have well-known names and well-known
advantages/disadvantages, just like design patterns

A good architecture ensures:
– Work can proceed in parallel
– Progress can be closely monitored
– The parts combine to provide the desired functionality

5CSE331 Autumn 2019

Example architectures

Pipe-and-filter (think: iterators)

Layered (think: levels of abstraction)
Blackboard (think:
callbacks)

Filter Filter Filter SinkSource
pipe pipe pipe pipe

Message
store

Component

Component Component

Component

Component

CSE331 Autumn 2019 6

A good architecture allows:

• Scaling to support large numbers of ______

• Adding and changing features

• Integration of acquired components

• Communication with other software

• Easy customization

– Ideally with no programming

– Turning users into programmers is good

• Software to be embedded within a larger system

• Recovery from wrong decisions

– About technology

– About markets
7CSE331 Autumn 2019

System architecture

• Have one!
– Basically lays down communication protocols

• Subject it to serious scrutiny
– At relatively high level of abstraction

• Strive for simplicity
– Flat is good
– Know when to say no
– A good architecture rules things out

• Reusable components should be a design goal
– Software is capital
– This will not happen by accident
– May compete with other goals of the organization (but less

so in the global view and long-term)
8CSE331 Autumn 2019

Temptations to avoid

• Avoid featuritis
– Costs under-estimated

• Effects of scale discounted
– Benefits over-estimated

• A Swiss Army knife is rarely the right tool
• Avoid digressions

– Infrastructure
– Premature tuning

• Often addresses the wrong problem
• Avoid quantum leaps

– Occasionally, great leaps forward
– More often, into the abyss

9CSE331 Autumn 2019

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order

10CSE331 Autumn 2019

Build tools

• Building software requires many tools:
– Java compiler, C/C++ compiler, GUI builder, Device driver

build tool, InstallShield, web server, database, scripting
language for build automation, parser generator, test
generator, test harness

• Reproducibility is essential
• System may run on multiple devices

– Each has its own build tools
• Everyone needs to have the same toolset!

– Wrong or missing tool can drastically reduce productivity
• Hard to switch tools in mid-project

If you’re doing work the computer could do for you,
then you’re probably doing it wrong

11CSE331 Autumn 2019

Version control (source code control)

• A version control system lets you:
– Collect work (code, documents) from all team members
– Synchronize team members to current source
– Have multiple teams work in parallel
– Manage multiple versions, releases of the software
– Identify regressions more easily

• Example tools:
– Git, Mercurial (Hg), Buck, Subversion (SVN), …

• Policies are even more important
– When to check in, when to update, when to branch and

merge, how builds are done
– Policies need to change to match the state of the project

• Always pull and diff before you commit
12CSE331 Autumn 2019

Bug tracking

• An issue tracking system supports:
– Tracking and fixing bugs
– Identifying problem areas and managing them
– Communicating among team members
– Tracking regressions and repeated bugs

• Essential for any non-small or non-short project

• Example tools:
JIRA, Bugzilla, Flyspray, Trac, …
Hosted tools (GitLab, GitHub, Sourceforge, …)

13CSE331 Autumn 2019

Bug tracking

Need to configure the bug tracking system to match the project
– Many configurations can be too complex to be useful

A good process is key to managing bugs
– An explicit policy that everyone knows, follows, and believes in

Bug
found

Prioritize Assign Replicate Examine

Discover Fix Verify Close

14CSE331 Autumn 2019

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order

15CSE331 Autumn 2019

Scheduling
“More software projects have gone awry for lack of calendar time
than for all other causes combined.”

-- Fred Brooks, The Mythical Man-Month

Three central questions of the software business:
3. When will it be done?
2. How much will it cost?
1. When will it be done?!?

• Estimates are almost always too optimistic
• Estimates reflect what one wishes to be true
• We confuse effort with progress
• Progress is poorly monitored
• Slippage is not aggressively treated

16CSE331 Autumn 2019

Scheduling is crucial but underappreciated

• Scheduling is underappreciated
– Made to fit other constraints

• A schedule is needed to make slippage visible
– Must be objectively checkable by outsiders

• Unrealistically optimistic schedules are a disaster
– Decisions get made at the wrong time
– Decisions get made by the wrong people
– Decisions get made for the wrong reasons

• The great paradox of scheduling:
– Everything takes twice as long as you think
– Hofstadter’s Law: It always takes longer than you expect,

even when you take into account Hofstadter's Law

17CSE331 Autumn 2019

Effort is not the same as progress

Cost is the product of workers and time
– Reasonable approximation: All non-labor costs (everything

but salary/benefits) are zero (!)
– Easy to track

Progress is more complicated and hard to track

• People don’t like to admit lack of progress
– Progress is mis-estimated
– Think they can catch up before anyone notices

• Design the process and architecture to facilitate tracking

18CSE331 Autumn 2019

How does a project get to be one year late?

One day at a time…
• It’s not the hurricanes that get you
• It’s the termites

– Tom missed a meeting
– Mary’s keyboard broke
– The compiler wasn’t updated
– …

If you find yourself ahead of schedule
– Don’t relax
– Don’t add features

19CSE331 Autumn 2019

Controlling the schedule

• First, you must have one
• Avoid non-verifiable milestones

– 90% of coding done
– 90% of debugging done
– Design complete

• 100% events are verifiable milestones
– Module 100% coded
– Unit testing successfully complete

• Need critical path chart (Gantt chart, PERT chart – directed
graphs of which parts of the project depend on others)
– Know effects of slippage
– Know what to work on when

20CSE331 Autumn 2019

Milestones

• Milestones are critical keep the project on track
– Policies may change at major milestones
– Check-in rules, build process, etc.

• Some typical milestones (names)
– Design complete
– Interfaces complete / feature complete
– Code complete / code freeze
– Alpha release
– Beta release
– Release candidate (RC)
– FCS (First Commercial Shipment) release

21CSE331 Autumn 2019

Dealing with slippage

• People must be held accountable
– Slippage is not inevitable
– Software should be on time, on budget, and on function

• Four options
– Add people – startup cost (“mythical man-month”)
– Buy components – hard in mid-stream
– Change deliverables – customer must approve
– Change schedule – customer must approve

• Take no small slips
– One big adjustment is better than three small ones

22CSE331 Autumn 2019

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order

23CSE331 Autumn 2019

How to code and test your design

• You have a design and architecture
– Need to code and test the system

• Key question, what to do when?

• Suppose the system has this module dependency diagram
– In what order should

you address the pieces? A

B

F

C D

G

E

24CSE331 Autumn 2019

Bottom-up

• Implement/test children first
– For example: G, E, B, F, C, D, A

• First, test G stand-alone (also E)
– Generate test data as discussed earlier
– Construct drivers

• Next, implement/test B, F, C, D
• No longer unit testing: using lower-level modules

– A test of module M tests:
• whether M works, and
• whether modules that M calls behave as expected

– When a failure occurs, many possible sources of defect
– Integration testing is hard, irrespective of order

25CSE331 Autumn 2019

A

B

F

C D

G

E

Building drivers

• Use a person
– Simplest choice, but also worst choice
– Errors in entering data are inevitable
– Errors in checking results are inevitable
– Tests are not easily reproducible

• Problem for debugging
• Problem for regression testing

– Test sets stay small, don’t grow over time
– Testing cannot be done as a background task

• Better alternative: Automated drivers in a test harness

26CSE331 Autumn 2019

Top-down

• Implement/test parents (clients) first
– Here, we start with A

• To run A, build stubs to simulate B, C, and D

• Next, choose a successor module, e.g., B
– Build a stub for E
– Drive B using A

• Suppose C is next
– Can we reuse the stub for E?

(Maybe, but maybe need something different)

27CSE331 Autumn 2019

A

B

F

C D

G

E

Implementing a stub
• Query a person at a console

– Same drawbacks as using a person as a driver

• Print a message describing the call
– Name of procedure and arguments
– Fine if calling program does not need result

• More common than you might think!

• Provide “canned” or generated sequence of results
– Often sufficient
– Generate using criteria used to generate data for unit test
– May need different stubs for different callers

• Provide a primitive (inefficient & incomplete) implementation
– Best choice, if not too much work
– Look-up table often works
– Sometimes called “mock objects” (ignoring technical definitions?)

28CSE331 Autumn 2019

Comparing top-down and bottom-up

• Criteria
– What kinds of errors are caught when?
– How much integration is done at a time?
– Distribution of testing time?
– Amount of work?
– What is working when (during the process)?

• Neither dominates
– Useful to understand advantages/disadvantages of each
– Helps you to design an appropriate mixed strategy

29CSE331 Autumn 2019

Catching design errors

• Top-down tests global decisions first
– E.g., what system does
– Most devastating place to be wrong
– Good to find early

• Bottom-up uncovers efficiency problems earlier
– Constraints often propagate downward
– You may discover they can’t be met at lower levels

30CSE331 Autumn 2019

What components work, when?

• Bottom-up involves lots of invisible activity
– 90% of code written and debugged
– Yet little that can be demonstrated

• Top-down depth-first
– Earlier completion of useful partial versions

31CSE331 Autumn 2019

Amount of integration at each step

• Less is better

• Top-down adds one module at a time
– When an error is detected, either:

• Lower-level module doesn’t meet specification
• Higher-level module tested with bad stub

• Bottom-up adds one module at a time
– Connect it to multiple modules
– Thus integrating more modules at each step
– More places to look for error

32CSE331 Autumn 2019

Amount of work

• Always need test harness

• Top-down
– Build stubs but not drivers

• Bottom-up
– Build drivers but not stubs

• Stubs are usually more work than drivers
– Particularly true for data abstractions

• On average, top-down requires more non-deliverable code
– Not necessarily bad

33CSE331 Autumn 2019

A

B

F

C D

G

E

Distribution of testing time

• Integration is what takes the time

• Bottom-up gets harder as you proceed
– You may have tested 90% of code

• But you still have far more than 10% of the work left
– Makes prediction difficult

• Top-down effort is more evenly distributed
– Better predictions
– Uses more machine time (could be an issue)

• Because we’re testing overall functionality (even if stubs
are used)

34CSE331 Autumn 2019

One good way to structure an implementation

• Largely top-down
– But always unit test modules

• Bottom-up
– When stubs are too much work [just implement real thing]
– Low level module that is used in lots of places
– Low-level performance concerns

• Depth-first, visible-first
– Allows interaction with customers, like prototyping
– Lowers risk of having nothing useful
– Improves morale of customers and programmers

• Needn’t explain how much invisible work done
• Better understanding of where the project is
• Don’t have integration hanging over your head

35CSE331 Autumn 2019

Test harnesses

• Goals:
– Increase amount of testing over time
– Facilitate regression testing
– Reduce human time spent on testing

• Take input from a file
• Call module being tested
• Save results (if possible)

– Including performance information
• Check results

– At best, is correct
– At worst, same as last time

• Generate reports

36CSE331 Autumn 2019

Regression testing

• Ensure that things that used to work still do
– Including performance
– Whenever a change is made

• Knowing exactly when a bug is introduced is important
– Keep old test results
– Keep versions of code that match those results
– Storage is cheap

37CSE331 Autumn 2019

Perspective…

• Software project management is challenging
– There are still major disasters – projects that go way over

budget, take much longer than planned, or are abandoned
after large investments

– Disasters usually stem from lack of discipline
– Always new challenges; we never build the same thing twice
– We’re better at it than we used to be, but not there yet

• (is “software engineering” real “engineering”?)

• Project management is a mix of hard and [so-called] soft skills

• We’ve only skimmed the surface
– Next: CSE 403, internship, your startup, ???

CSE331 Autumn 2019 38

	CSE 331�Software Design & Implementation
	But first...
	What we didn’t do…
	Outline
	Architecture
	Example architectures
	A good architecture allows:
	System architecture
	Temptations to avoid
	Outline
	Build tools
	Version control (source code control)
	Bug tracking
	Bug tracking
	Outline
	Scheduling
	Scheduling is crucial but underappreciated
	Effort is not the same as progress
	How does a project get to be one year late?
	Controlling the schedule
	Milestones
	Dealing with slippage
	Outline
	How to code and test your design
	Bottom-up
	Building drivers
	Top-down
	Implementing a stub
	Comparing top-down and bottom-up
	Catching design errors
	What components work, when?
	Amount of integration at each step
	Amount of work
	Distribution of testing time
	One good way to structure an implementation
	Test harnesses
	Regression testing
	Perspective…

