
CSE 331
Software Design & Implementation

Andrew Gies
Autumn 2019

React Overview

UW CSE 331 Autumn 2019 1



HTML, Formally

• HTML - Hypertext Markup Language
– Not a full PL, describes document structure & 

content
• Consists mostly of tags and their contents

– Each one has a beginning and end.
– Can contain text (content) and other tags.
– Each tag has a different meaning in the document.
– Optional attributes (organized as key-value pairs)

• Can think of them like “constructor 
parameters”: pieces of data that contain extra 
info about the tag.

– Define document structure

UW CSE 331 Autumn 2019 2



Anatomy of a Tag

<p id=”firstParagraph”> Some Text </p>

UW CSE 331 Autumn 2019 3

<br />

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Self-Closing Tag (No Content)

We’ll see what <p> and <br> mean soon...

Element



Tags form a Tree
<div>

<p id=”firstParagraph”> Some Text </p>
<br />
<div>

<p>Hello</p>
</div>

</div>

UW CSE 331 Autumn 2019 4

div

p br div

p

This tree is often 
called the "DOM" –
Document Object 
Model



A Few Useful Tags

• <p> - Paragraph tag, surrounds paragraph with 
whitespace/line breaks.

• <div> - “The curly braces of HTML” - used for grouping 
other tags. Surrounds its content with whitespace/line 
breaks.

• <span> - Like <div>, but no whitespace/line breaks.
• <br /> - Forces a new line (like “\n”). Has no content.
• <html> and <head> and <body> - Used to organize a 

basic HTML document.
• <script> - Marks a section of non-HTML script code.
• LOTS of other tags for bullet point lists, pictures, buttons, 

text boxes, etc...
– See the W3Schools HTML reference for a complete 

list, along with all their supported attributes.

UW CSE 331 Autumn 2019 5



Example 1:

Making a Clickable Button

UW CSE 331 Autumn 2019 6

<html>
<head>

<title>1. HTML5 Buttons</title>
</head>
<body>

<script type="text/javascript">
function sayHello() {

alert("Hello, World!");
}

</script>
<button onclick="sayHello()">Click Me!</button>

</body>
</html>

JS Code that is run whenever the button is clicked. In 
this case - just call a function that does the real “work”.

Text displayed 
inside the button.



• <canvas> tag: creates a blank drawing surface that 
you can “draw” on with JS
– Create lines, shapes, draw images.
– Has width and height attributes to determine 

the size of the drawing surface.
• We’re using <canvas> in HW8 and HW9 to draw 

lines/paths on top of images (like a map of campus!)
• Javascript is going to need some kind of Canvas 

object in order to call functions and draw pictures.
– How do we get this object?

UW CSE 331 Autumn 2019 7

Example 2:

Drawing on a Canvas



Modifying HTML with JS
• JS exists to allow webpages (meaning the HTML inside 

them) to change dynamically. So JS has to have a way to 
access/change the HTML tags.

• Implementation: Every HTML element has an associated 
JS object that the browser maintains.
– Can get a reference in JS by using the “id” attribute.
– Every tag can have an ID - value is a string that 

uniquely identifies an element.

UW CSE 331 Autumn 2019 8

HTML:

<p id="thePar">Hello, World!</p>
JS:

let parObj = document.getElementByID("thePar");

parObj.innerHTML = "Hello, 331!";



Example 2 Code
<html>

<head>

<title>2. HTML5 Canvas</title>

</head>

<body>

<script type="text/javascript">

function drawSomething() {

let canvas = document.getElementById("theCanvas");

let context = canvas.getContext("2d");

context.fillStyle = "teal";

context.fillRect(50, 50, 150, 100);

}

</script>

<button onclick="drawSomething()">Draw Something Cool</button>

<br />

<canvas id="theCanvas" width="500" height="500"></canvas>

</body>

</html>

UW CSE 331 Autumn 2019 9



Making the Jump to React

• Previously, we’ve been writing HTML, then using a small 
amount of JS to interact with it.

• In React: Write mostly JS, which is responsible for 
dynamically generating the HTML on-the-fly.
– Fundamentally different way of thinking about websites.
– Allows code reuse (more or less impossible in HTML)
– Improves modularity.
– Designed to reduce coupling, increase cohesion. (Yay!)

• Code looks different than what we’ve seen so far.

UW CSE 331 Autumn 2019 10



Starting React Theory

• The webpage is made up of Components: these act like 
fancy tags:
– Can contain other components
– Have attribute-like things (slightly different, we’ll see 

later how they work).
– Can also contain all kinds of JS code and application 

data (this is the powerful thing about components).
– Decides what it “looks like” when actually placed on 

the webpage.
• Expressed in terms of other components and 

regular HTML tags.
• Create a component by creating a JS class that extends 

the Component class (provided by React)

UW CSE 331 Autumn 2019 11



Basics of JSX

• Write HTML tags directly inside the JS code - can be 
treated like JS objects and put in variables, passed to 
functions, etc...

• Inside the “HTML”, use curly braces to switch back to 
Javascript - can write any expression, the value is 
replaced into the HTML:

• Converted to regular JS and HTML at 'compile time' –
before it's sent to the browser.

<p>The meaning of life is {6 * 7}.</p>

let idVariable = “paragraph-element”;
<p id={idVariable}>I'm a Paragraph!</p>

UW CSE 331 Autumn 2019 12



• A simple “Hello World” application in React
– Demonstrates all the “starting” code required to get 

React up-and-running.
– Uses React’s dialect of Javascript called JSX

• React needs a “starting point” to work with when creating 
that application. We use index.html and index.js as that 
starting point.
– “index” is traditionally used as the name of the 

starting point of any website. React looks for files with 
this name by default. (Like 'main' in Java)

• The actual application traditionally starts in App.js

UW CSE 331 Autumn 2019 13

Example 3:

React Boilerplate



Let’s convert our previous canvas code from Example 2 to use React! 
Step by step from Example 3:

1. Change the <p> element to a <canvas>
2. Need to get a canvas object to draw like last time: different in 

React.
a. It’s React’s job to manage the HTML for us, grabbing 

something with an ID defeats that purpose and can cause 
bugs.

b. In React, we use “Ref” objects instead of ID strings, but they 
work similarly.

3. Write an updateCanvasImage() method to draw a rectangle 
on the canvas like before.

4. Use componentDidMount() to find out when React is ready for 
us to start drawing things, then call updateCanvasImage()

UW CSE 331 Autumn 2019 14

Example 4:

React Canvas



• Each component is an instance of an object, so it can 
have whatever instance variables it wants.

• React has a special meaning for this.state, however.
– State contains an entire object inside it, which can 

contain any number of other variables - no limit on the 
amount of data inside it.

– Any data that has an effect on what a component 
looks like should be stored inside state.

• * Well, almost. It should either be inside state or inside “props” - but 
we haven’t seen props yet. (Coming in Example 7)

– Can be set like a normal variable only inside the 
constructor during initialization.
• To change it outside the constructor, use the 

setState method. (We’ll see this in Example 6)

UW CSE 331 Autumn 2019 15

Example 5:

Static State



Going to use buttons (same buttons we’ve seen before) to 
dynamically change the state:
1. Put the <canvas> inside a <div> so we can add things to our 

component.
2. Add a few <button>s to the component next to the canvas.
3. Write a few functions to be the click functions of all the buttons.

a. Note: In React, onclick was renamed to onClick and 
works slightly differently. Pass it a function object which is 
then called, instead of just JS code inside a string.\

b. For reasons we’ll discuss later, need to use the “arrow 
function” syntax instead of the regular function syntax.

4. Call this.setState() inside the onclick functions to change 
our state.

5. Use componentDidUpdate() to be notified of when the 
state has changed.

UW CSE 331 Autumn 2019 16

Example 6:

Changing State with Buttons!



React’s Rules about State
• Do not modify state without setState please :)

– setState does more than just update the variable, it also 
tells React what you’re changing so React can do its job

• State updates are requests - the update is NOT guaranteed 
to have completed when setState returns.
– This means if you setState and immediately try to use 

it, this.state probably doesn’t have the new value yet.
– This is what componentDidUpdate is for - React will 

let you know when state has changed so you can redraw 
your component.

– Rule of Thumb: treat state as if it’s write-only unless you 
know you’re currently inside render, 
componentDidUpdate, or something called by one of 
those two.

UW CSE 331 Autumn 2019 17



Up Next

Section
• Practice with state, setState, component lifecycle
• React debugging tips & common bugs we see in 331
• HW8 introduction and overview.

Lecture
• Props: What are they? How are they used?
• Higher-level react theory
• Breaking our demo application into reasonable 

modules.

Any Questions?

UW CSE 331 Autumn 2019 18



• Inside the component: show up as properties of a props
object that’s passed into the constructor.

• Outside the component: passed to a component using a 
syntax similar to HTML attributes.

• Read-only inside the component.
• Changes (from the parent) trigger a component update 

just like state changes.
• Main Idea:

– State: the data is owned by the component itself. 
– Props: the data is owned by the component’s parent.

UW CSE 331 Autumn 2019 19

Props: The Other Kind of Data



1. Let’s create a new component: simply encompasses 
a piece of text with the current color.
a. In a real application, probably isn’t something that makes sense 

to be its own component, but it’s a good example.
2. Need to somehow get the data from the App 

component inside ColorTitle
a. Completely different classes/objects, so they 

can’t just share variables.
3. Add a “color” attribute to our <ColorTitle /> 

declaration, which becomes a prop inside the 
ColorTitle component.

4. When the “color” prop’s value is changed, React 
automatically re-renders the component.

UW CSE 331 Autumn 2019 20

Example 7:

Introducing ColorTitle



• Lots changes in this next example: but not much is new 
material.

• Add two other components to create a hierarchy.
• The main data, what color is currently selected, is stored 

in the parent (<App />). Passed as props to children.
• Use a callback from ButtonGroup to modify the current 

color.

UW CSE 331 Autumn 2019 21

Example 8:

Putting it all Together



The Flow

UW CSE 331 Autumn 2019 22

color
changeColor()

<canvas>

<button>

<button>

<button>
<p>

<App />

<ColorTitle />

<TitledCanvas /> <ButtonGroup />



Summary

• Components are reusable blocks of code that allow 
modular design and proper cohesion.

• Components contain other components and HTML tags 
to determine how they appear on a webpage.
– React is responsible for managing the underlying 

webpage.
• Data owned/controlled by a component is stored it that 

component’s state.
• Data flows down from parent to child through props.
• Data flows up from child to parent through callbacks from 

the child into the parent’s code.
• React notifies components of changes to their data 

through lifecycle methods, like componentDidUpdate

UW CSE 331 Autumn 2019 23


	CSE 331�Software Design & Implementation
	HTML, Formally
	Anatomy of a Tag
	Tags form a Tree
	A Few Useful Tags
	Example 1:
Making a Clickable Button
	Example 2:
Drawing on a Canvas
	Modifying HTML with JS
	Example 2 Code
	Making the Jump to React
	Starting React Theory
	Basics of JSX
	Example 3:
React Boilerplate
	Example 4:
React Canvas
	Example 5:
Static State
	Example 6:
Changing State with Buttons!
	React’s Rules about State
	Up Next
	
Props: The Other Kind of Data
	Example 7:
Introducing ColorTitle
	Example 8:
Putting it all Together
	The Flow
	Summary

