
CSE 331
Software Design & Implementation

Dan Grossman
Autumn 2019

Lecture 2 – Reasoning About Code With Logic

Overview

• Next few lectures (including first section): two presentations linked
to course calendar on the web:
– Lecture notes – primary source
– Powerpoint slides – summary & supplement
They are complementary and you should understand both of them

• Homework 1 due soon (see calendar)

UW CSE 331 Autumn 2019 2

Reasoning about code

Determine what facts are true as a program executes
– Under what assumptions

Examples:
– If x starts positive, then y is 0 when the loop finishes
– Contents of the array that arr refers to are sorted
– Except at one code point, x + y == z
– For all instances of Node n,

n.next == null ∨ n.next.prev == n

– …

• Notation: In logic we often use ∧ for “and” and ∨ for “or”.
Concise and convenient, but we’re not dogmatic about it

UW CSE 331 Autumn 2019 3

Why do this?

• Essential complement to testing, which we will also study
– Testing: Actual results for some actual inputs
– Logical reasoning: Reason about whole classes of

inputs/states at once (“If x > 0, …”)
• Prove a program correct (or find bugs trying), or (even

better) develop program and proof together to get a
program that is correct by construction

• Understand why code is correct

• Stating assumptions is the essence of specification
– “Callers must not pass null as an argument”
– “Method will always return an unaliased object”
– …

UW CSE 331 Autumn 2019 4

Our approach

• Hoare Logic: a classic approach to logical reasoning about code
– For now, consider just variables, assignments, if-statements,

while-loops
• So no objects or methods for now

• This lecture: The idea, without loops, in 3 passes
1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.
3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops

UW CSE 331 Autumn 2019 5

Why?

• Programmers rarely “use Hoare logic” in this much detail
– For simple snippets of code, it’s overkill
– Gets very complicated with objects and aliasing
– But can be very useful to develop and reason about loops and

data with subtle invariants
• Examples: Homework 0, Homework 2

• Also it’s an ideal setting for the right logical foundations
– How can logic “talk about” program states?
– How does code execution “change what is true”?
– What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does
happen All the Time in The Real World® (coming lectures)

UW CSE 331 Autumn 2019 6

Example

Forward reasoning:
– Suppose we initially know (or assume) w > 0

// w > 0
x = 17;
// w > 0 ∧ x == 17
y = 42;
// w > 0 ∧ x == 17 ∧ y == 42
z = w + x + y;
// w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59

…
– Then we know various things after, including z > 59

UW CSE 331 Autumn 2019 7

Example

Backward reasoning:
– Suppose we want z to be negative at the end

// w + 17 + 42 < 0
x = 17;
// w + x + 42 < 0
y = 42;
// w + x + y < 0
z = w + x + y;
// z < 0

– Then we know initially we need to know/assume w < -59
• Necessary and sufficient

UW CSE 331 Autumn 2019 8

Forward vs. Backward, Part 1

• Forward reasoning:
– Determine what follows from initial assumptions
– Most useful for maintaining an invariant

• Backward reasoning
– Determine sufficient conditions for a certain result

• If result desired, the assumptions suffice for correctness
• If result undesired, the assumptions suffice to trigger bug

UW CSE 331 Autumn 2019 9

Forward vs. Backward, Part 2

• Forward reasoning:
– Simulates the code (for many “inputs” “at once”)
– Often more intuitive
– But introduces [many] facts irrelevant to a goal

• Backward reasoning
– Often more useful: Understand what each part of the code

contributes toward the goal
– “Thinking backwards” takes practice but gives you a

powerful new way to reason about programs and to write
correct code

UW CSE 331 Autumn 2019 10

Conditionals
// initial assumptions
if(…) {
… // also know test evaluated to true

} else {
… // also know test evaluated to false

}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information
about the result of the test-expression

2. The overall postcondition is the disjunction (“or”) of the
postcondition of the branches

UW CSE 331 Autumn 2019 11

Example (Forward)

Assume initially x >= 0
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
// x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
z = x;
// … ∧ z > 0

} else {
// x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
z = x + 1;
// … ∧ z == 1

}
// (… ∧ z > 0) ∨ (… ∧ z == 1) (so z > 0)

UW CSE 331 Autumn 2019 12

Our approach

• Hoare Logic, a classic approach to logical reasoning about code
– [Named after its inventor, Tony Hoare]
– Considering just variables, assignments, if-statements,

while-loops
• So no objects or methods

• This lecture: The idea, without loops, in 3 passes
1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.
3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops

UW CSE 331 Autumn 2019 13

Some notation and terminology

• The “assumption” before some code is the precondition
• The “what holds after (given assumption)” is the postcondition

• Instead of writing pre/postconditions after //, write them in {…}
– This is not Java
– How Hoare logic has been written “on paper” for 40ish years

{ w < -59 }
x = 17;
{ w + x < -42 }

– In pre/postconditions, = is equality, not assignment
• Math’s “=”, which for numbers is Java’s ==

{ w > 0 ∧ x = 17 }
y = 42;
{ w > 0 ∧ x = 17 ∧ y = 42 }

UW CSE 331 Autumn 2019 14

What an assertion means

• An assertion (including pre/postconditions) is a logical formula
that can refer to program state (e.g., contents of variables)

• A program state is something that “given” a variable can “tell
you” its contents
– Or any expression that has no side-effects
– (informally, this is just the current values of all variables)

• An assertion holds for a program state, if evaluating using the
program state produces true
– Evaluating a program variable produces its contents in the

state
– Can think of an assertion as representing the set of (exactly

the) states for which it holds

UW CSE 331 Autumn 2019 15

A Hoare Triple

• A Hoare triple is two assertions and one piece of code:
{P} S {Q}

– P the precondition
– S the code (statement)
– Q the postcondition

• A Hoare triple {P} S {Q} is (by definition) valid if:
– For all states for which P holds, executing S always

produces a state for which Q holds
– Less formally: If P is true before S, then Q must be true after
– Else the Hoare triple is invalid

UW CSE 331 Autumn 2019 16

Examples

Valid or invalid?
– (Assume all variables are integers without overflow)

• {x != 0} y = x*x; {y > 0}

• {z != 1} y = z*z; {y != z}

• {x >= 0} y = 2*x; {y > x}

• {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5}

• {true} (x = y; z = x;) {y=z}

• {x=7 ∧ y=5}
(tmp=x; x=tmp; y=x;)
{y=7 ∧ x=5}

UW CSE 331 Autumn 2019 17

valid
invalid

valid

valid
invalid

invalid

Aside: assert statement in Java

• An Java assert is a statement with a Java expression, e.g.,
assert x > 0 && y < x;

• Similar to our assertions
– Evaluate using a program state to get true or false
– Uses Java syntax

• In Java, this is a run-time thing: Run the code and raise an
exception if assertion is violated
– Unless assertion-checking is disabled
– Later course topic – but really useful to detect bugs early

• This week: we are reasoning about the code, not running it on
some input

UW CSE 331 Autumn 2019 19

The general rules

• So far: Decided if a Hoare triple was valid by using our
understanding of programming constructs

• Now: For each kind of construct there is a general rule
– A rule for assignment statements
– A rule for two statements in sequence
– A rule for conditionals
– [next lecture:] A rule for loops
– …

UW CSE 331 Autumn 2019 20

Basic rule: Assignment

{P} x = e; {Q}

• Let Q’be the same as Q except replace every x with e
• Triple is valid if: For all program states, if P holds, then Q’ holds

(i.e., if P guarantees that Q’ is true, then execution of x=e; will
guarantee that Q is true)

• Example: {z > 34} y=z+1; {y > 1}
– Q’ is {z+1 > 1}

UW CSE 331 Autumn 2019 21

Combining rule: Sequence

UW CSE 331 Autumn 2019

{P} S1;S2 {Q}

• Triple is valid if and only if there is an assertion R such that
– {P}S1{R} is valid, and
– {R}S2{Q} is valid

• Example: {z >= 1} y=z+1; w=y*y; {w > y} (integers)
– Let R be {y > 1} (this particular R picked because “it works”)
– Show {z >= 1} y=z+1; {y > 1}

• Use rule for assignments: z >= 1 implies z+1 > 1
– Show {y > 1} w=y*y; {w > y}

• Use rule for assignments: y > 1 implies y*y > y

22

Combining rule: Conditional

UW CSE 331 Autumn 2019

{P} if(b) S1 else S2 {Q}

• Triple is valid if and only if there are assertions Q1,Q2 such that
– {P ∧ b}S1{Q1} is valid, and
– {P ∧ !b}S2{Q2} is valid, and
– Q1 ∨ Q2 implies Q

• Example: {true} (if(x > 7) y=x; else y=20;) {y > 5}
– Let Q1 be {y > 7} (other choices work too)
– Let Q2 be {y = 20} (other choices work too)
– Use assignment rule to show {true ∧ x > 7}y=x;{y>7}
– Use assignment rule to show {true ∧ x <= 7}y=20;{y=20}
– Indicate y>7 ∨ y=20 implies y>5

23

Our approach

• Hoare Logic, a classic approach to logical reasoning about code
– Considering just variables, assignments, if-statements,

while-loops
• So no objects or methods

• This lecture: The idea, without loops, in 3 passes
1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.
3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops

UW CSE 331 Autumn 2019 24

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:
– P1 is stronger than P2
– P2 is weaker than P1

• Whenever P1 holds, P2 also holds
• So it is more (or at least as) “difficult” to satisfy P1

– The program states where P1 holds are a subset of the
program states where P2 holds

• So P1 puts more constraints on program states
• So it’s a stronger set of obligations/requirements

UW CSE 331 Autumn 2019

P1 P2

25

Examples

• x = 17 is stronger than x > 0

• x is prime is neither stronger nor weaker than x is odd

• x is prime and x > 2 is stronger than
x is odd and x > 2

• …

UW CSE 331 Autumn 2019 26

Why this matters to us

• Suppose:
– {P}S{Q}, and
– P is weaker than some P1, and
– Q is stronger than some Q1

• Then: {P1}S{Q} and {P}S{Q1} and {P1}S{Q1}

• Example:
– P is x >= 0
– P1 is x > 0
– S is y = x+1
– Q is y > 0
– Q1 is y >= 0

UW CSE 331 Autumn 2019 27

P1 P

Q Q1

So…

• For backward reasoning, if we want {P}S{Q}, we could instead:
– Show {P1}S{Q}, and
– Show P => P1

• Better, we could just show {P2}S{Q} where P2 is the weakest
precondition of Q for S
– Weakest means the most lenient assumptions such that Q

will hold after executing S
– Any precondition P such that {P}S{Q} is valid will be

stronger than P2, i.e., P => P2

• Amazing (?): Without loops/methods, for any S and Q, there
exists a unique weakest precondition, written wp(S,Q)
– Like our general rules with backward reasoning

UW CSE 331 Autumn 2019 28

Weakest preconditions

• wp(x = e;, Q) is Q with each x replaced by e
– Example: wp(x = y*y;, x > 4) = y*y > 4, i.e., |y| > 2

• wp(S1;S2, Q) is wp(S1,wp(S2,Q))
– i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)
– Example: wp((y=x+1; z=y+1;), z > 2) =

(x + 1)+1 > 2, i.e., x > 0

• wp(if b S1 else S2, Q) is this logic formula:
(b ∧ wp(S1,Q)) ∨ (!b ∧ wp(S2,Q))

– (In any state, b will evaluate to either true or false…)
– (You can sometimes then simplify the result)

UW CSE 331 Autumn 2019 29

Simple examples

• If S is x = y*y and Q is x > 4,
then wp(S,Q) is y*y > 4, i.e., |y| > 2

• If S is y = x + 1; z = y – 3; and Q is z = 10,
then wp(S,Q) …
= wp(y = x + 1; z = y – 3;, z = 10)
= wp(y = x + 1;, wp(z = y – 3;, z = 10))
= wp(y = x + 1;, y-3 = 10)
= wp(y = x + 1;, y = 13)
= x+1 = 13
= x = 12

UW CSE 331 Autumn 2019 30

Bigger example

UW CSE 331 Autumn 2019

-4 -3 -2 -1 0 721 4 653 8 9

S is if (x < 5) {
x = x*x;

} else {
x = x+1;

}
Q is x >= 9

wp(S, x >= 9)
= (x < 5 ∧ wp(x = x*x;, x >= 9))

∨ (x >= 5 ∧ wp(x = x+1;, x >= 9))
= (x < 5 ∧ x*x >= 9)

∨ (x >= 5 ∧ x+1 >= 9)
= (x <= -3) ∨ (x >= 3 ∧ x < 5)

∨ (x >= 8)

31

If-statements review

UW CSE 331 Autumn 2019

Forward reasoning

{P}
if B

{P ∧ B}
S1

{Q1}
else

{P ∧ !B}
S2

{Q2}
{Q1 ∨ Q2}

Backward reasoning

{ (B ∧ wp(S1, Q)) ∨
(!B ∧ wp(S2, Q)) }

if B

{wp(S1, Q)}
S1

{Q}
else

{wp(S2, Q)}
S2

{Q}
{Q}

32

“Correct”

• If wp(S,Q) is true, then executing S will always produce a state
where Q holds
– true holds for every program state

UW CSE 331 Autumn 2019 33

One more issue

• With forward reasoning, there is a problem with assignment:
– Changing a variable can affect other assumptions

• Example:
{true}
w=x+y;
{w = x + y;}
x=4;
{w = x + y ∧ x = 4}
y=3;
{w = x + y ∧ x = 4 ∧ y = 3}

But clearly we do not know w=7!

UW CSE 331 Autumn 2019 34

The fix

• When you assign to a variable, you need to replace all other
uses of the variable in the post-condition with a different variable
– So you refer to the “old contents”

• But only do this if you actually use the “old contents” from
that variable later in the proof – omit otherwise

• Corrected example:
{true}
w=x+y;
{w = x + y;}
x=4;
{w = x1 + y ∧ x = 4}
y=3;
{w = x1 + y1 ∧ x = 4 ∧ y = 3}

UW CSE 331 Autumn 2019 35

Useful example: swap

• Swap contents
– Give a name to initial contents so we can refer to them in the

post-condition
– Just in the formulas: these “names” are not in the program
– Use these extra variables to avoid “forgetting” “connections”

{x = x_pre ∧ y = y_pre}
tmp = x;
{x = x_pre ∧ y = y_pre ∧ tmp=x}
x = y;
{x = y ∧ y = y_pre ∧ tmp=x_pre}
y = tmp;
{x = y_pre ∧ y = tmp ∧ tmp=x_pre}

UW CSE 331 Autumn 2019 36

	CSE 331�Software Design & Implementation
	Overview
	Reasoning about code
	Why do this?
	Our approach
	Why?
	Example
	Example
	Forward vs. Backward, Part 1
	Forward vs. Backward, Part 2
	Conditionals
	Example (Forward)
	Our approach
	Some notation and terminology
	What an assertion means
	A Hoare Triple
	Examples
	Aside: assert statement in Java
	The general rules
	Basic rule: Assignment
	Combining rule: Sequence
	Combining rule: Conditional
	Our approach
	Weaker vs. Stronger
	Examples
	Why this matters to us
	So…
	Weakest preconditions
	Simple examples
	Bigger example
	If-statements review
	“Correct”
	One more issue
	The fix
	Useful example: swap

