
A physicist, an engineer and a programmer were in a car 
driving over a steep alpine pass when the brakes failed. 
Their car raced down the mountain, and only a 
conveniently-placed escape lane saved them.

The physicist said "We need to model the friction in the 
brake pads and the resultant temperature rise, see if we 
can work out why they failed".

The engineer said "I think I've got a few wrenches in the 
back. I'll take a look and see if I can work out what's 
wrong".

The programmer said "Why don't we try again and see if it's 
reproducible?"



Slides adapted from Alex Mariakakis
with material from Krysta Yousoufian, 
Kellen Donohue, and James Fogarty

Section 8:
Model-View-Controller



MVC 

� The classic design pattern
� Used for data-driven user applications
� Such apps juggle several tasks:

+ Loading and storing the data – getting it in/out of storage on request
+ Constructing the user interface – what the user sees
+ Interpreting user actions – deciding whether to modify the UI or data

� These tasks are largely independent of each 
other

� Model, view, and controller each get one task



MODEL

talks to data source 
to retrieve and store 
data

Which database table is 
the requested data 

stored in?

What SQL query will get 
me the data

I need?



VIEW

asks model for data 
and presents it in a 
user-friendly format

Would this text look 
better blue or red? In the 

bottom corner
or front and center?

Should these items go in a 
dropdown list or radio 

buttons?



CONTROLLER

listens for the user 
to change data or 
state in the UI, 
notifying the model 
or view accordingly

The user just clicked the 
“hide details” button. I 

better tell the view.

The user just changed the 
event details. I better let the 
model know to update the 

data.



BENEFITS OF MVC

� Organization of code
+ Maintainable, easy to find what you need

� Ease of development
+ Build and test components independently

� Flexibility
+ Swap out views for different presentations of the same data (ex: calendar 

daily, weekly, or monthly view)
+ Swap out models to change data storage without affecting user



MVC FLOW IN THEORY

Model

View

Controller



MVC FLOW

� In theory…
+ Pattern of behavior in response to inputs (controller) are independent of 

visual geometry (view)
+ Controller contacts view to interpret what input events should mean in the 

context of the view

� In practice…
+ View and controller are so intertwined that they almost always occur in 

matched pairs (ex: command line interface)

+ Many architectures combine the two



MVC FLOW IN PRACTICE

Model
View

Controller



PUSH VS. PULL

Model

View

Controller



PUSH VS. PULL ARCHITECTURE

� Push architecture
+ As soon as the model changes, it notifies all of 

the views

� Pull architecture
+ When a view needs to be updated, it asks the 

model for new data



PUSH VS. PULL ARCHITECTURE

� Advantages for push
+ Guaranteed to have latest data in case 

something goes wrong later on

� Advantages for pull
+ Avoid unnecessary updates, not nearly as 

intensive on the view



MVC EXAMPLE – TRAFFIC SIGNAL



TRAFFIC SIGNAL – MVC
Component Model View Controller

Detect cars waiting to enter 
intersection

Traffic lights to direct car traffic 

Decide to change the light’s status
Manual override for particular lights

Detect pedestrians waiting to cross

Pedestrian signals to direct pedestrians

External timer which triggers changes 
at set interval

X

X
X

X
X

X

X



TRAFFIC SIGNAL

� Model
+ Stores current state of traffic flow

� Knows current direction of traffic
� Capable of skipping a light cycle

+ Stores whether there are cars and/or pedestrians waiting

� View 
+ Conveys information to cars and pedestrians in a specific 

direction

� Controller
+ Aware of model’s current direction
+ Triggers methods to notify model that state should change



TRAFFIC SIGNAL CODE
� Model

+ TrafficModel – keeps track of which lights should be on and off

� View
+ CarLight – shows relevant state of TrafficModel to cars
+ PedestrianLight – shows relevant state of TrafficModel to 

pedestrians

� Controller
+ PedestrianButton – notifies TrafficModel that there is a pedestrian 

waiting
+ CarDetector – notifies TrafficModel that there is a car waiting
+ LightSwitch – enables or disables the light
+ Timer – regulates time in some way, possibly to skip cycles



MVC EXAMPLE – WEB STORE



WEB STORE – MVC
Component Model View Controller

Update user’s shopping cart

Display price/details of a product

Storage of product/inventory details
Purchase items in shopping cart

Record of customer transactions

User sign-in

Authenticate user sign-in attempt
Check user credentials



WEB STORE – MVC
Component Model View Controller

Update user’s shopping cart X

Display price/details of a product X

Storage of product/inventory details X

Purchase items in shopping cart X

Record of customer transactions X

User sign-in X

Authenticate user sign-in attempt X

Check user credentials X



HW8 OVERVIEW

� Apply your generic graph & Dijkstra’s to 
campus map data

� Given a list of buildings and walking paths
� Produce routes from one building to another 

on the walking paths



HW8 DATA FORMAT

� List of buildings (abbreviation, name, loc in 
pixels)

BAG Bagley Hall (East Entrance) 1914.5103,1708.8816
BGR By George 1671.5499,1258.4333

� List of paths (endpoint 1, endpoint 2, dist in feet)
1903.7201,1952.4322

1906.1864,1939.0633: 26.583482327919597
1897.9472,1960.0194: 20.597253035175832
1915.7143,1956.5: 26.68364745009741

2337.0143,806.8278
2346.3446,817.55768: 29.685363221542797
2321.6193,788.16714: 49.5110360968527
2316.4876,813.59229: 44.65826043418031

� (0,0) is in the upper left



MVC IN HW8

� Model stores graph, performs Dijkstra’s

� View shows results to users in text format

� Controller takes user commands and uses view 
to show results

� View and Controller will change in HW9, but 
Model will stay the same


