Section 5;
HW®6 and Interfaces

SLIDES ADAPTED FROM ALEX MARIAKAKIS,
WITH MATERIAL FROM KRYSTA YOUSOUFIAN, MIKE ERNST, KELLEN DONOHUE




How is Homework 5 going?




Agenda
* Breadth-first search (BFS)

* Interfaces

* Parsing Marvel Data




Reminder: Enabling asserts in
Eclipse

To enable asserts:
Go to Run -> Run Configurations... -> Arguments
tab -> input -ea in VM arguments section




Reminders:
Expensive CheckReps are BAD

(at least when assignments are turned in, but can be
useful for finding hard-to-discover problems — so need to
be able to control expensive checks)

Debug flags are GOOD

(or enums to indicate depth of debug)



Don’t forget your CheckReps!




Canlreach B
from A?




Breadth-First Search (BFS)

> Often used for discovering connectivity

°Calculates the shortest path if and only if all edges have same
positive or no weight

> Depth-first search (DFS) is commonly mentioned with BFS
> BFS looks “wide”, DFS looks “deep”

> DFS can also be used for discovery, but not the shortest path



BFS Pseudocode

put start node in a queue
while (queue 1s not empty):
pop node N off queue

if (N is goal) :
return true
else:
for each node O that is child of N:

push O onto queue
return false



Breadth-First Search

START: Starting at A

Q: <A> Goal: Fully explore
Pop: A, Q: <>
Q: <B, C>

Pop: B, Q: <C>
Q: <C>

Pop: C, Q: <C>
Q: <>

DONE




Breadth-First Search with Cycle

START: Starting at A
Q: <A> Goal: Fully Explore
Pop: A, Q: <>
Q: <B>
Pop: B, Q: <>
Q: <C>
Pop: C, Q: <>
Q: <A>
NEVER DONE




BFS Pseudocode

put start node in a queue

while (queue 1s not empty):
pop node N off queue
mark node N as visited

if (N is goal) : Mark the node

return true
else: as visited!
for each node O that i1s child of N:
if O is not marked visited:

push O onto queue
return false



Breadth-First Search

Problem: Find everything reachable from A

Q: <>




Breadth-First Search




Breadth-First Search




Breadth-First Search




Breadth-First Search




Breadth-First Search




Breadth-First Search




Breadth-First Search




Breadth-First Search




Shortest Paths with BFS

From Node B

oo Lren L cou

<B,A>
<B> 0
<B,A,C> 2

m O O @

Shortest path to D? to E?
What are the costs?




Shortest Paths with BFS

From Node B
owinion e L coi
<B,A>
B <B> 0
C <B,A,C> 2
D <B,D> 1
E <B,D,E> 2

Shortest path to D? to E?
What are the costs?




Shortest Paths with Weights

From Node B

TS
<B,A>
B <B> 0
C <B,A,C> 5
D
E

Weights are not the same!
Are the paths?




Shortest Paths with Weights

From Node B
owinion L L con
<B,A>
B <B> 0
C <B,A,C> 5
D <B,A,C,D> 7
E <B,A,C,E> 7




Interfaces




Classes, Interfaces, and Types

The fundamental unit of programming in
Java is a class

Classes can extend other classes and
implement interfaces
Interfaces can extend other interfaces




Classes, Objects, and Java

Everything is an instance of a class
> Defines data and methods

Every class extends exactly one other class
> Object if no explicit superclass

° Inherits superclass fields

Every class also defines a type
> Foo defines type Foo

> Foo inherits all inherited types



Interfaces

Pure type declaration
public interface Comparable {

int compareTo (Object other);

}

Can contain:
> Method specifications (implicitly public abstract)

° Named constants (implicitly public final static)

Does not contain implementation!

Cannot create instances of interfaces




Implementing Interfaces

® A class can implement one or more interfaces
class Kitten implements Pettable, Huggable

e The implementing class and its instances have the interface type(s)
as well as the class type(s)

® The class must provide or inherit an implementation of all methods
defined by the interface(s)

o Not true for abstract classes




Using Interface Types

e An interface defines a type, so we can declare variables
and parameters of that type

® A variable with an interface type can refer to an object of
any class implementing that type

List<String> x = new ArrayList<String>();
vold sort(List aList) {..}



Guidelines for Interfaces

® Provide interfaces for significant types and abstractions
e Write code using interface types like Map instead of
HashMap and TreeMap wherever possible

> Allows code to work with different implementations later on

e Both interfaces and classes are appropriate in various
circumstances




