
SECTION 2:
HW3 Setup

cse331-staff@cs.washington.edu

slides borrowed and adapted from Alex Mariakis,CSE 390a,Justin Bare, Deric
Pang, Erin Peach, Vinod Rathnam

LINKS TO DETAILED SETUP
AND USAGE INSTRUCTIONS
● All References

● http://courses.cs.washington.edu/courses/cse331/18wi/docs.html
● Working from home (& setup info): Java, Eclipse, SSH

● http://courses.cs.washington.edu/courses/cse331/18wi/tools/WorkingAtHom
e.html

● Editing, Compiling, Running, and Testing Programs
● http://courses.cs.washington.edu/courses/cse331/18wi/tools/editing-

compiling.html
● Eclipse Reference

● http://courses.cs.washington.edu/courses/cse331/18wi/tools/eclipse_referen
ce.html

● Version Control - Git
● http://courses.cs.washington.edu/courses/cse331/18wi/tools/versioncontrol.h

tml
● Assignment Submission

● http://courses.cs.washington.edu/courses/cse331/18wi/tools/turnin.html

DEVELOPER TOOLS
● Remote access

● Eclipse and Java versions

● Version Control

VERSION CONTROL

WHAT IS VERSION
CONTROL?
● Also known as source control/revision control
● System for tracking changes to code

○ Software for developing software

● Essential for managing projects
○ See a history of changes
○ Revert back to an older version
○ Merge changes from multiple sources

● We’ll be talking about git/GitLab, but there are
alternatives
○ Subversion, Mercurial, CVS
○ Email, Dropbox, USB sticks (don’t even think of doing this)

VERSION CONTROL
ORGANIZATION
● A repository stores the

master copy of the project
○ Someone creates the repo for a new

project
○ Then nobody touches this copy directly
○ Lives on a server everyone can access

● Each person clones her
own working copy
○ Makes a local copy of the repo
○ You’ll always work off of this copy
○ The version control system syncs the

repo and working copy (with your help)

git

Working
copy

Working
copy

Repository

REPOSITORY
● Can create the repository anywhere

○ Can be on the same computer that you’re going to
work on, which might be ok for a personal project
where you just want rollback protection

● But, usually you want the repository to be robust:
○ On a computer that’s up and running 24/7

■ Everyone always has access to the project

○ On a computer that has a redundant file system
■ No more worries about that hard disk crash

wiping away your project!

● We’ll use CSE GitLab – very similar to GitHub but tied to
CSE accounts and authentication

VERSION CONTROL
COMMON ACTIONS

Most common commands:
● add / commit / push

○ integrate changes from your working
copy into the repository

● pull
○ integrate changes into your working

copy from the repository

Working
copy

Repository

git

pu
sh

pull

VERSION CONTROL
UPDATING FILES

In a bit more detail:
● You make some local changes,

test them, etc., then…
● git add – tell git which changed

files you want to save in repo
● git commit – save all files you’ve

“add”ed in the local repo copy
as an identifiable update

● git push – synchronize with the
GitLab repo by pushing local
committed changes

Working
copy

Repository

git

pu
sh

pull

VERSION CONTROL
COMMON ACTIONS (CONT.)

Other common commands:
● add, rm

○ add or delete a file in the working copy
○ just putting a new file in your working

copy does not add it to the repo!
○ still need to commit to make permanent

Working
copy

Repository

git

pu
sh

pull

THIS QUARTER
• We distribute starter code by adding it to your

GitLab repo. You retrieve it with git clone the
first time then git pull for later assignments

• You will write code using Eclipse
• You turn in your files by adding them to the

repo, committing your changes, and eventually
pushing accumulated changes to GitLab

• You “turn in” an assignment by tagging your
repo and pushing the tag to GitLab
• Do this after committing and pushing your files

• You will validate your homework by SSHing
onto attu, cloning your repo, and running an Ant
build file

331 VERSION CONTROL

Repository

create/push

Working copy
co

m
m

it/
pu

sh

clone/pull
add

Working copy for
grading

ECLIPSE

WHAT IS ECLIPSE?
● Integrated development environment (IDE)

● Allows for software development from start to
finish
○ Type code with syntax highlighting, warnings, etc.
○ Run code straight through or with breakpoints (debug)
○ Break code

● Mainly used for Java
○ Supports C, C++, JavaScript, PHP, Python, Ruby, etc.

● Alternatives
○ NetBeans, Visual Studio, IntelliJ IDEA

ECLIPSE SHORTCUTS

Shortcut Purpose
Ctrl + D Delete an entire line
Alt + Shift + R Refactor (rename)
Ctrl + Shift + O Clean up imports
Ctrl + / Toggle comment
Ctrl + Shift + F Make my code look nice ☺
Ctrl + Space Autocomplete
Ctrl + S Save (Eclipse does not autosave!)

ECLIPSE and Java
● Get Java 8

● Important: Java separates compile and execution, eg:
○ javac Example.java Example.class
○ Both compile and execute have to be the same Java!

● Please use Eclipse Oxygen, “Eclipse for Java Developers”

● Instructions:
http://courses.cs.washington.edu/courses/cse331/18wi/tool
s/WorkingAtHome.html#Step_1

produces

331 VERSION
CONTROL
● Your main repository is on GitLab

● Only clone once (unless you’re working in a
lot of places)

● Don’t forget to add/commit/push files!
● Do this regularly for backup even before you’re done!

● Check in your work!

HW 3

● Many small exercises to get you used to version
control and tools and a Java refresher

● More information on homework instructions:
http://courses.cs.washington.edu/courses/cse33
1/18wi/hws/hw3/hw3.html

● Cloning your repo: Instructions
● Committing changes: Instructions

○ How you turn in your assignments
● Updating changes: Instructions

○ How you retrieve new assignments

GIT BEST PRACTICES
● Add/commit/push your code EARLY and

OFTEN!!!
● You really, really, really don’t want to deal with merge

conflicts
● Keep your repository up-to-date all the time

● Use the combined ‘Commit and Push’ tool in
Eclipse

● Do not rename folders and files that we gave
you – this will mess up our grading process and
you could get a bad score

● Use the repo only for the homework
● Adding other stuff (like notes from lecture) may mess up

our grading process

Turning in HW3

● Instructions
● Create a hw3-final tag on the last commit and push

the tag to the repo (this can and should be done in
Eclipse)
● You can push a new hw3-final tag that overwrites the old one if

you realize that you still need to make changes (Demo)
● In Eclipse, just remember to check the correct

checkboxes to overwrite existing tags
● But keep track of how many late days you have left!

● After the final commit and tag pushed, remember to
log on to attu and run ant validate

Turning in HW3

● Add/commit/push your final code

● Create a hw3-final tag on the last commit and push
the tag to the repo (this can and should be done in
Eclipse)
● You can push a new hw3-final tag that overwrites the old one if

you realize that you still need to make changes (Demo)
● In Eclipse, just remember to check the correct

checkboxes to overwrite existing tags
● But keep track of how many late days you have left!

● After the final commit and tag pushed, remember to
log on to attu and run ant validate

Ant Validate

● What will this do?
○ You start with a freshly cloned copy of your repo

and do “git checkout hw3-final” to switch to the
files you intend for us to grade, then run ant
validate

○ Makes sure you have all the required files
○ Make sure your homework builds without errors
○ Passes specification and implementation tests in

the repository
■ Note: this does not include the additional

tests we will use when grading
■ This is just a sanity check that your current

tests pass

Ant Validate

● How do you run ant validate?
○ Has to be done on attu from the command line

since that is the environment your grading will be
done on

○ Do not use the Eclipse ant validate build tool!

○ Be sure to use a fresh copy of your repo, and
discard that copy when you’re done

○ If you need to fix things, do it in your primary
working copy (eclipse)

Ant Validate

● How do you run ant validate?
○ Steps

■ Log into attu via SSH
■ In attu, checkout a brand new local copy (clone) of your

repository through the command-line
● Note: Now, you have two local copies of your repository,

one on your computer through Eclipse and one in attu
● May need to create an SSH key on attu and add to GitLab:

instructions
■ Go to the hw folder which you want to validate through the ‘cd’

command, then switch to the hw3 tag
● For example: cd ~/cse331/src/hw3

git checkout hw3-final

■ Run ant validate

Ant Validate

● How do you know it works?
○ If successful, will output Build Successful at the

bottom

○ If unsuccessful, will output Build Failed at the
bottom with information on why
■ If ant validate failed, discard the validate copy

of the repo on attu, fix and commit changes
through eclipse, go back to attu, clone a fresh
copy of the repo, and try ant validate again

ECLIPSE DEBUGGING (if time)
● System.out.println() works for debugging…

○ It’s quick
○ It’s dirty
○ Everyone knows how to do it

● …but there are drawbacks
○ What if I’m printing something that’s null?
○ What if I want to look at something that can’t

easily be printed (e.g., what does my binary
search tree look like now)?

● Eclipse’s debugger is powerful…if you know
how to use it

ECLIPSE DEBUGGING

Double	click	in	the	grey	area	to	the	left	of	your	code	to	set	a	
breakpoint.	A	breakpoint	is	a	line	that	the	Java	VM	will	stop	at	
during	normal	execution	of	your	program,	and	wait	for	action	from	
you.

ECLIPSE DEBUGGING

Click	the	Bug	icon	to	run	in	Debug	
mode.	Otherwise	your	program	
won’t	stop	at	your	breakpoints.

ECLIPSE DEBUGGING

Controlling	your	program	
while	debugging	is	done	
with	these	buttons

ECLIPSE DEBUGGING

Play,	pause,	stop	work	just	
like	you’d	expect

ECLIPSE DEBUGGING

Step	Into

Steps	into	the	method	at	the	
current	execution	point	– if	
possible.	If	not	possible	then	
just	proceeds	to	the	next	
execution	point.

If	there’s	multiple	methods	
at	the	current	execution	
point	step	into	the	first	one	
to	be	executed.

ECLIPSE DEBUGGING

Step	Over

Steps	over	any	method	calls	at	
the	current	execution	point.

Theoretically	program	proceeds	
just	to	the	next	line.	

BUT,	if	you	have	any	
breakpoints	set	that	would	be	
hit	in	the	method(s)	you	
stepped	over,	execution	will	
stop	at	those	points	instead.

ECLIPSE DEBUGGING

Step	Out

Allows	method	to	finish	and	
brings	you	up	to	the	point	
where	that	method	was	called.

Useful	if	you	accidentally	step	
into	Java	internals	(more	on	
how	to	avoid	this	next).

Just	like	with	step	over	though	
you	may	hit	a	breakpoint	in	the	
remainder	of	the	method,	and	
then	you’ll	stop	at	that	point.

ECLIPSE DEBUGGING

Enable/disable	step	filters

There’s	a	lot	of	code	you	don’t	
want	to	enter	when	debugging,	
internals	of	Java,	internals	of	
JUnit,	etc.

You	can	skip	these	by	
configuring	step	filters.

Checked	items	are	skipped.

ECLIPSE DEBUGGING

Stack	Trace

Shows	what	methods	have	
been	called	to	get	you	to	
current	point	where	
program	is	stopped.

You	can	click	on	different	
method	names	to	navigate	
to	that	spot	in	the	code	
without	losing	your	current	
spot.

ECLIPSE DEBUGGING

Variables	Window

Shows	all	variables,	including	
method	parameters,	local	
variables,	and	class	variables,	
that	are	in	scope	at	the	current	
execution	spot.	Updates	when	
you	change	positions	in	the	
stackframe.	You	can	expand	
objects	to	see	child	member	
values.	There’s	a	simple	value	
printed,	but	clicking	on	an	item	
will	fill	the	box	below	the	list	
with	a	pretty	format.

Some	values	are	in	the	form	of	
ObjectName (id=x),	this	can	be	
used	to	tell	if	two	variables	are	
refering to	the	same	object.

ECLIPSE DEBUGGING

Variables	that	have	changed	
since	the	last	break	point	are	
highlighted	in	yellow.

You	can	change	variables	right	
from	this	window	by	double	
clicking	the	row	entry	in	the	
Value	tab.

ECLIPSE DEBUGGING

Variables	that	have	changed	
since	the	last	break	point	are	
highlighted	in	yellow.

You	can	change	variables	right	
from	this	window	by	double	
clicking	the	row	entry	in	the	
Value	tab.

ECLIPSE DEBUGGING

There’s	a	powerful	right-click	
menu.

• See	all	references	to	a	given	
variable

• See	all	instances	of	the	
variable’s	class

• Add	watch	statements	for	
that	variables	value	(more	
later)

ECLIPSE DEBUGGING

Show	Logical	Structure

Expands	out	list	items	so	it’s	as	
if	each	list	item	were	a	field	
(and	continues	down	for	any	
children	list	items)

ECLIPSE DEBUGGING

Breakpoints	Window

Shows	all	existing	breakpoints	in	
the	code,	along	with	their	
conditions	and	a	variety	of	
options.

Double	clicking	a	breakpoint	will	
take	you	to	its	spot	in	the	code.

ECLIPSE DEBUGGING

Enabled/Disabled	Breakpoints

Breakpoints	can	be	temporarily	
disabled	by	clicking	the	
checkbox	next	to	the	
breakpoint.	This	means	it	won’t	
stop	program	execution	until	re-
enabled.

This	is	useful	if	you	want	to	hold	
off	testing	one	thing,	but	don’t	
want	to	completely	forget	about	
that	breakpoint.	

ECLIPSE DEBUGGING

Hit	count

Breakpoints	can	be	set	to	occur	
less-frequently	by	supplying	a	
hit	count	of	n.

When	this	is	specified,	only	each	
n-th	time	that	breakpoint	is	hit	
will	code	execution	stop.

ECLIPSE DEBUGGING

Conditional	Breakpoints

Breakpoints	can	have	
conditions.	This	means	the	
breakpoint	will	only	be	
triggered	when	a	condition	you	
supply	is	true.	This	is	very	useful
for	when	your	code	only	breaks	
on	some	inputs!	

Watch	out	though,	it	can	make	
your	code	debug	very	slowly,	
especially	if	there’s	an	error	in	
your	breakpoint.

ECLIPSE DEBUGGING

Disable	All	Breakpoints

You	can	disable	all	breakpoints		
temporarily.	This	is	useful	if	
you’ve	identified	a	bug	in	the	
middle	of	a	run	but	want	to	let	
the	rest	of	the	run	finish	
normally.

Don’t	forget	to	re-enable	
breakpoints	when	you	want	to	
use	them	again.

ECLIPSE DEBUGGING

Break	on	Java	Exception

Eclipse	can	break	whenever	a	
specific	exception	is	thrown.	
This	can	be	useful	to	trace	an	
exception	that	is	being	
“translated”	by	library	code.

ECLIPSE DEBUGGING

Expressions	Window

Used	to	show	the	results	of	custom	
expressions	you	provide,	and	can	
change	any	time.

Not	shown	by	default	but	highly	
recommended.

ECLIPSE DEBUGGING

Expressions	Window

Used	to	show	the	results	of	custom	
expressions	you	provide,	and	can	
change	any	time.

Resolves	variables,	allows	method	
calls,	even	arbitrary	statements	
“2+2”

Beware	method	calls	that	mutate	
program	state	– e.g.	stk1.clear()	or	
in.nextLine()	– these	take	effect	
immediately

ECLIPSE DEBUGGING

Expressions	Window

These	persist	across	projects,	so	
clear	out	old	ones	as	necessary.

ECLIPSE DEBUGGING

