
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2018

Testing

UW CSE 331 Winter 2018 1

Administrivia 1

• HW4 due Thursday night
– Gotta implement things as specified

• Watch the late days: some people have used 3 of 4 as of
hw2, a couple have used all of them already.
– Assignments are not accepted late except for the few

late days (2 max per assignment, 4 total for the
quarter). No sliding penalties, etc.

• (Obviously serious emergencies can be a different
story, but those are few and far between)

– Turn in your best effort on time or when you are out of
late days and we’ll award credit based on work done

UW CSE 331 Winter 2018 2

Administrivia 2

• HW5 out by late Wed.; HW6 out shortly after that
– HW5: design/implement/test a Graph ADT

• Will take time – start early (we’re not kidding)
– More in sections this week (don’t miss)
– Do a preliminary design yourself (for sure have a

first design by end of the weekend) then discuss
ideas & tradeoffs with others (use whiteboards,
etc.)

– HW6: graph application. Good for insight on some
of the things your Graph ADT needs to support

• Lots of readings for next few lectures – quizzes soon!

UW CSE 331 Winter 2018 3

Outline

• Why correct software matters
– Motivates testing and more than testing, but now seems like

a fine time for the discussion

• Testing principles and strategies

– Purpose of testing

– Kinds of testing

– Heuristics for good test suites

– Black-box testing

– Clear-box testing and coverage metrics

– Regression testing

UW CSE 331 Winter 2018 4

Non-outline

• Modern development ecosystems have much built-in support for
testing
– Unit-testing frameworks like JUnit
– Regression-testing frameworks connected to builds and

version control
– Continuous testing
– …

• No tool details covered here
– See homework, section, internships, …

UW CSE 331 Winter 2018 5

Rocket self-destructed 37 seconds after launch

– Cost: over $1 billion

Reason: Undetected bug in control software

– Conversion from 64-bit floating point to 16-bit signed integer
caused an exception

– The floating point number was larger than 32767

– Efficiency considerations led to the disabling of the exception
handler, so program crashed, so rocket crashed

Ariane 5 rocket (1996)

6UW CSE 331 Winter 2018

Therac-25 radiation therapy machine

Excessive radiation killed patients (1985-87)

– New design removed hardware prevents the electron-beam
from operating in its high-energy mode. Now safety checks
done in software.

– Equipment control task did not properly synchronize with the
operator interface task, so race conditions occurred if the
operator changed the setup too quickly.

– Missed during testing
because it took practice before
operators worked quickly enough
for the problem to occur.

UW CSE 331 Winter 2018 7

Legs deployed à Sensor signal falsely indicated that the craft had
touched down (130 feet above the surface)
Then the descent engines shut down prematurely

Error later traced to a single bad line of software code
Why didn’t they blame the sensor?

Mars Polar Lander

8UW CSE 331 Winter 2018

More examples

• Mariner I space probe (1962)
• Microsoft Zune New Year’s Eve crash (2008)
• iPhone alarm (2011)
• Denver Airport baggage-handling system (1994)
• Air-Traffic Control System in LA Airport (2004)
• AT&T network outage (1990)
• Northeast blackout (2003)
• USS Yorktown Incapacitated (1997)
• Intel Pentium floating point divide (1993)
• Excel: 65,535 displays as 100,000 (2007)
• Prius brakes and engine stalling (2005)
• Soviet gas pipeline (1982)
• Study linking national debt to slow growth (2010)
• …

UW CSE 331 Winter 2018 9

Software bugs cost money

• 2013 Cambridge University study: Software bugs cost global
economy $312 Billion per year
– http://www.prweb.com/releases/2013/1/prweb10298185.htm

• $440 million loss by Knight Capital Group in 30 minutes
– August 2012 high-frequency trading error

• $6 billion loss from 2003 blackout in NE USA & Canada
– Software bug in alarm system in Ohio power control room

UW CSE 331 Winter 2018 10

Building Quality Software

What Affects Software Quality?

External

Correctness Does it do what it supposed to do?

Reliability Does it do it accurately all the time?

Efficiency Does it do without excessive resources?

Integrity Is it secure?

Internal

Portability Can I use it under different conditions?

Maintainability Can I fix it?

Flexibility Can I change it or extend it or reuse it?

Quality Assurance (QA)

– Process of uncovering problems and improving software quality

– Testing is a major part of QA

11UW CSE 331 Winter 2018

Software Quality Assurance (QA)

Testing plus other activities including:
– Static analysis (assessing code without executing it)
– Correctness proofs (theorems about program properties)
– Code reviews (people reading each others’ code)
– Software process (methodology for code development)
– …and many other ways to find problems and increase

confidence

No single activity or approach can guarantee software quality
“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

-Donald Knuth, 1977

12UW CSE 331 Winter 2018

What can you learn from testing?

“Program testing can be used to show
the presence of bugs, but never to
show their absence!”

Edsgar Dijkstra
Notes on Structured Programming,

1970

Nevertheless testing is essential. Why?

13UW CSE 331 Winter 2018

What Is Testing For?

Validation = reasoning + testing
– Make sure module does what it is specified to do
– Uncover problems, increase confidence

Two rules:

1. Do it early and often
– Catch bugs quickly, before they have a chance to hide
– Automate the process wherever feasible

2. Be systematic
– If you thrash about randomly, the bugs will hide in the corner

until you're gone
– Understand what has been tested for and what has not
– Have a strategy!

14UW CSE 331 Winter 2018

Kinds of testing

• Testing is so important the field has terminology for different
kinds of tests

– Won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 8 varieties total]:

– Unit testing versus system/integration testing

• One module’s functionality versus pieces fitting together

– Black-box testing versus clear-box testing

• Does implementation influence test creation?

• “Do you look at the code when choosing test data?”

– Specification testing versus implementation testing

• Test only behavior guaranteed by specification or other
behavior expected for the implementation?

UW CSE 331 Winter 2018 15

Unit Testing

• A unit test focuses on one method, class, interface, or module

• Test a single unit in isolation from all others

• Typically done earlier in software life-cycle
– Integrate (and test the integration) after successful unit

testing

16UW CSE 331 Winter 2018

How is testing done?

Write the test
1) Choose input data/configuration
2) Define the expected outcome

Run the test
3) Run with input and record the outcome
4) Compare observed outcome to expected outcome

17UW CSE 331 Winter 2018

sqrt example

// throws: IllegalArgumentException if x<0
// returns: approximation to square root of x
public double sqrt(double x){…}

What are some values or ranges of x that might be worth probing?
x < 0 (exception thrown)
x ≥ 0 (returns normally)
around x = 0 (boundary condition)
perfect squares (sqrt(x) an integer), non-perfect squares
x<sqrt(x) and x>sqrt(x) – that's x<1 and x>1 (and x=1)
Specific tests: say x = -1, 0, 0.5, 1, 4

18UW CSE 331 Winter 2018

What’s So Hard About Testing?

“Just try it and see if it works...”

// requires: 1 ≤ x,y,z ≤ 10000
// returns: computes some f(x,y,z)
int proc1(int x, int y, int z){…}

Exhaustive testing would require 1 trillion runs!
– Sounds totally impractical – and this is a trivially small problem

Key problem: choosing test suite
– Small enough to finish in a useful amount of time
– Large enough to provide a useful amount of validation

19UW CSE 331 Winter 2018

Approach: Partition the Input Space

Ideal test suite:

Identify sets with same behavior

Try one input from each set

Two problems:

1. Notion of same behavior is subtle

• Naive approach: execution equivalence

• Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge

• If we had it, we wouldn’t need to test

• Use heuristics to approximate cheaply

20UW CSE 331 Winter 2018

Naive Approach: Execution Equivalence

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < 0) return -x;
else return x;

}

All x < 0 are execution equivalent:
– Program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

21UW CSE 331 Winter 2018

Execution Equivalence Can Be Wrong

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else return x;

}

{-3, 3} does not reveal the error!

Two possible executions: x < -2 and x >= -2

Three possible behaviors:
– x < -2 OK, x = -2 or x= -1 (BAD)
– x >= 0 OK

22UW CSE 331 Winter 2018

Heuristic: Revealing Subdomains

• A subdomain is a subset of possible inputs

• A subdomain is revealing for error E if either:
– Every input in that subdomain triggers error E, or
– No input in that subdomain triggers error E

• Need test only one input from a given subdomain
– If subdomains cover the entire input space, we are
guaranteed to detect the error if it is present

• The trick is to guess these revealing subdomains

23UW CSE 331 Winter 2018

Example

For buggy abs, what are revealing subdomains?
– Value tested on is a good (clear-box) hint

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else return x;

}

Example sets of subdomains:
– Which is best?

Why not:

… {-2} {-1} {0} {1} …
{…, -4, -3} {-2, -1} {0, 1, …}

UW CSE 331 Winter 2018 24

{…,-6, -5, -4} {-3, -2, -1} {0, 1, 2, …}

Heuristics for Designing Test Suites

A good heuristic gives:
– Few subdomains
– " errors in some class of errors E: High probability that

some subdomain is revealing for E and triggers E

Different heuristics target different classes of errors
– In practice, combine multiple heuristics
– Really a way to think about and communicate your test

choices

25UW CSE 331 Winter 2018

Black-Box Testing

Heuristic: Explore alternate cases in the specification
Procedure is a black box: interface visible, internals hidden

Example
// returns: a > b => returns a
// a < b => returns b
// a = b => returns a
int max(int a, int b) {…}

3 cases lead to 3 tests
(4, 3) => 4 (i.e. any input in the subdomain a > b)
(3, 4) => 4 (i.e. any input in the subdomain a < b)
(3, 3) => 3 (i.e. any input in the subdomain a = b)

26UW CSE 331 Winter 2018

Black Box Testing: Advantages

Process is not influenced by component being tested
– Assumptions embodied in code not propagated to test data
– (Avoids “group-think” of making the same mistake)

Robust with respect to changes in implementation
– Test data need not be changed when code is changed

Allows for independent testers
– Testers need not be familiar with code
– Tests can be developed before the code

27UW CSE 331 Winter 2018

More Complex Example

Write tests based on cases in the specification
// returns: the smallest i such
// that a[i] == value
// throws: Missing if value is not in a
int find(int[] a, int value) throws Missing

Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

Have we captured all the cases?

Must hunt for multiple cases
– Including scrutiny of effects and modifies

28

([4, 5, 5], 5) => 1

UW CSE 331 Winter 2018

Heuristic: Boundary Testing

Create tests at the edges of subdomains

Why?

– Off-by-one bugs

– “Empty” cases (0 elements,

null, …)

– Overflow errors in arithmetic

– Object aliasing

Small subdomains at the edges of the “main” subdomains have a high
probability of revealing many common errors

– Also, you might have misdrawn the boundaries

29UW CSE 331 Winter 2018

Boundary Testing

To define the boundary, need a notion of adjacent inputs

One approach:
– Identify basic operations on input points
– Two points are adjacent if one basic operation apart

Point is on a boundary if either:
– There exists an adjacent point in a different subdomain
– Some basic operation cannot be applied to the point

Example: list of integers
– Basic operations: create, append, remove
– Adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>
– Boundary point: [] (can’t apply remove)

30UW CSE 331 Winter 2018

Other Boundary Cases

Arithmetic
– Smallest/largest values
– Zero

Objects
– null
– Circular list
– Same object passed as multiple arguments (aliasing)

31UW CSE 331 Winter 2018

Boundary Cases: Arithmetic Overflow

// returns: |x|
public int abs(int x) {…}

What are some values or ranges of x that might be worth probing?

– x < 0 (flips sign) or x ≥ 0 (returns unchanged)

– Around x = 0 (boundary condition)

– Specific tests: say x = -1, 0, 1

How about…
int x = Integer.MIN_VALUE; // x=-2147483648
System.out.println(x<0); // true
System.out.println(Math.abs(x)<0); // also true!

From Javadoc for Math.abs:

Note that if the argument is equal to the value of

Integer.MIN_VALUE, the most negative representable int

value, the result is that same value, which is negative

32UW CSE 331 Winter 2018

Boundary Cases: Duplicates & Aliases

// modifies: src, dest
// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest
<E> void appendList(List<E> src, List<E> dest) {
while (src.size()>0) {
E elt = src.remove(src.size()-1);
dest.add(elt);

}
}

What happens if src and dest refer to the same object?
– This is aliasing
– It’s easy to forget!
– Watch out for shared references in inputs

33UW CSE 331 Winter 2018

Heuristic: Clear (glass, white)-box testing

Focus: features not described by specification
– Control-flow details
– Performance optimizations
– Alternate algorithms for different cases

Common goal:
– Ensure test suite covers (executes) all of the program
– Measure quality of test suite with % coverage

Assumption implicit in goal:
– If high coverage, then most mistakes discovered

34UW CSE 331 Winter 2018

Glass-box Motivation
There are some subdomains that black-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i < x/2; i++) {
if (x%i==0)
return false;

}
return true;

} else {
return primeTable[x];

}
}

35UW CSE 331 Winter 2018

Glass Box Testing: [Dis]Advantages

• Finds an important class of boundaries
– Yields useful test cases

• Consider CACHE_SIZE in isPrime example
– Important tests CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1
– If CACHE_SIZE is mutable, may need to test with different
CACHE_SIZE values

Disadvantage:
– Tests may have same bugs as implementation
– Buggy code tricks you into complacency once you look at it

36UW CSE 331 Winter 2018

Code coverage: what is enough?

int min(int a, int b) {
int r = a;
if (a <= b) {

r = a;
}
return r;

}

• Consider any test with a ≤ b (e.g., min(1,2))
– Executes every instruction
– Misses the bug

• Statement coverage is not enough

37UW CSE 331 Winter 2018

Code coverage: what is enough?

int quadrant(int x, int y) {
int ans;
if(x >= 0)
ans=1;

else
ans=2;

if(y < 0)
ans=4;

return ans;
}

• Consider two-test suite: (2,-2) and (-2,2). Misses the bug.
• Branch coverage (all tests “go both ways”) is not enough

– Here, path coverage is enough (there are 4 paths)

38UW CSE 331 Winter 2018

2 1

3 4

Code coverage: what is enough?

int num_pos(int[] a) {
int ans = 0;
for(int x : a) {

if (x > 0)
ans = 1; // should be ans += 1;

}
return ans;

}

• Consider two-test suite: {0,0} and {1}. Misses the bug.
• Or consider one-test suite: {0,1,0}. Misses the bug.

• Branch coverage is not enough
– Here, path coverage is enough, but no bound on path-count

39UW CSE 331 Winter 2018

Code coverage: what is enough?

int sum_three(int a, int b, int c) {
return a+b;

}

• Path coverage is not enough
– Consider test suites where c is always 0

• Typically a “moot point” since path coverage is unattainable for
realistic programs
– But do not assume a tested path is correct
– Even though it is more likely correct than an untested path

• Another example: buggy abs method from earlier in lecture

40UW CSE 331 Winter 2018

Varieties of coverage
Various coverage metrics (there are more):

Statement coverage
Branch coverage
Loop coverage
Condition/Decision coverage
Path coverage

Limitations of coverage:
1. 100% coverage is not always a reasonable target

100% may be unattainable (dead code)
High cost to approach the limit

2. Coverage is just a heuristic
We really want the revealing subdomains

41

increasing
number of
test cases
required
(generally)

UW CSE 331 Winter 2018

Pragmatics: How Many/What Tests?

• Ideal: each test checks one specific thing (method,…)

– Failure points to responsible component

• Reality: can’t always test in complete isolation

– Example: need to use observer(s) to see if creator,

mutator, or producer yields correct result(s)

• Reality: try to structure test suites so each test checks one

new thing and has minimal dependence on others

– Failure more likely to point to a single responsible

component

UW CSE 331 Winter 2018 42

Pragmatics: Regression Testing

• Whenever you find a bug
– Store the input that elicited that bug, plus the correct output
– Add these to the test suite
– Verify that the test suite fails
– Fix the bug
– Verify the fix

• Ensures that your fix solves the problem
– Don’t add a test that succeeded to begin with!

• Helps to populate test suite with good tests
• Protects against reversions that reintroduce bug

– It happened at least once, and it might happen again

43UW CSE 331 Winter 2018

Rules of Testing

First rule of testing: Do it early and do it often
– Best to catch bugs soon, before they have a chance to hide
– Automate the process if you can
– Regression testing will save time

Second rule of testing: Be systematic
– If you randomly thrash, bugs will hide in the corner until later
– Writing tests is a good way to understand the spec
– Think about revealing domains and boundary cases

• If the spec is confusing, write more tests
– Spec can be buggy too

• Incorrect, incomplete, ambiguous, missing corner cases
– When you find a bug, write a test for it first and then fix it

44UW CSE 331 Winter 2018

Closing thoughts on testing

Testing matters
– You need to convince others that the module works

Catch problems earlier
– Bugs become obscure beyond the unit they occur in

Don't confuse volume with quality of test data
– Can lose relevant cases in mass of irrelevant ones
– Look for revealing subdomains

Choose test data to cover:
– Specification (black box testing)
– Code (glass box testing)

Testing can't generally prove absence of bugs
– But it can increase quality and confidence

45UW CSE 331 Winter 2018

