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Connecting implementations to specs
Representation Invariant: maps Object → boolean

– Indicates if an instance is well-formed
– Defines the set of valid concrete values
– Only values in the valid set make sense as implementations of an 

abstract value
– For implementors/debuggers/maintainers of the abstraction: 

no object should ever violate the rep invariant 
• Such an object has no useful meaning

Abstraction Function: maps Object → abstract value
– What the data structure means as an abstract value
– How the data structure is to be interpreted
– Only defined on objects meeting the rep invariant
– For implementors/debuggers/maintainers of the abstraction: 

Each procedure should meet its spec (abstract values) by “doing 
the right thing” with the concrete representation
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Rep inv. constrains structure, not meaning

An implementation of insert that preserves the rep invariant:
public void insert(Character c) { 
Character cc = new Character(encrypt(c));
if (!elts.contains(cc))
elts.addElement(cc);

}
public boolean member(Character c) { 
return elts.contains(c);

}

Program is still wrong
– Clients observe incorrect behavior
– What client code exposes the error?
– Where is the error?
– We must consider the meaning 
– The abstraction function helps us

CharSet s = new CharSet();
s.insert('a');
if (s.member('a'))

…
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Abstraction function:  rep→abstract value

The abstraction function maps the concrete representation to the 
abstract value it represents

AF:  Object → abstract value
AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”

Not executable because abstract values are “just” conceptual

The abstraction function lets us reason about what [concrete] 
methods do in terms of the clients’ [abstract] view
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Abstraction function and insert
Goal is to satisfy the specification of insert:

// modifies: this

// effects: thispost = thispre ∪ {c}

public void insert (Character c) {…}

The AF tells us what the rep means, which lets us place the blame
AF(CharSet this) = { c | c is contained in this.elts }

Consider a call to insert:
On entry, meaning is AF(thispre) = eltspre

On exit, meaning is AF(thispost) = AF(thispre) U {encrypt('a')}

What if we used this abstraction function instead?
AF(this) = { c | encrypt(c) is contained in this.elts }

= { decrypt(c) | c is contained in this.elts }
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The abstraction function is a function

Why do we map concrete to abstract and not vice versa?

• It’s not a function in the other direction
– Example: lists [a,b] and [b,a] might each represent the 

set {a,b}

• It’s not as useful in the other direction
– Purpose is to reason about whether our methods are 

manipulating concrete representations correctly in terms of 
the abstract specifications
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Stack AF example
Abstract stack with array and 
“top” index implementation

new() 0 0 0

push(17) 17 0 0

T
o
p
=
1

push(-9) 17 -9 0

T
o
p
=
2

T
o
p
=
0

stack = <>

stack = <17>

stack = <17,-9>

pop() 17 -9 0

stack = <17>
T
o
p
=
1

Abstract states are the same
stack = <17> = <17>

Concrete states are different
<[17,0,0], top=1>

≠
<[17,-9,0], top=1>

AF is a function
Inverse of AF is not a function
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Benevolent side effects
Different implementation of member:

boolean member(Character c1) {
int i = elts.indexOf(c1);
if (i == -1)

return false;
// move-to-front optimization
Character c2 = elts.elementAt(0);
elts.set(0, c1);
elts.set(i, c2);
return true;

}

• Move-to-front speeds up repeated membership tests
• Mutates rep, but does not change abstract value

– AF maps both reps to the same abstract value
• Precise reasoning/explanation for “clients can’t tell”
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For any correct operation…
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Writing an abstraction function

Domain:  all representations that satisfy the rep invariant
Range: can be tricky to denote

For mathematical entities like sets:  easy
For more complex abstractions: give names to specification 
– AF defines the value of each “specification field”

• (Course notes have examples of complex AFs with many 
spec. fields, but it’s possible to be too complex – go for 
simple, correct, understandable whenever possible)

Overview section of the specification should provide a notation for 
writing abstract values

– Could implement a method for printing in this notation
• Useful for debugging
• Often a good choice for toString
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Data Abstraction: Summary
Rep invariant

– Which concrete values represent abstract values
Abstraction function

– For each concrete value, which abstract value it represents

Together, they modularize the implementation
– Neither one is part of the ADT’s specification
– Both are needed to reason that an implementation satisfies 

the specification

In practice, representation invariants are documented more often 
and more carefully than abstraction functions
– A more widely understood and appreciated concept
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