
CSE 331
Software Design & Implementation

Hal Perkins
Winter 2018

Abstraction Functions

UW CSE 331 Winter 2018 1

Connecting implementations to specs
Representation Invariant: maps Object → boolean

– Indicates if an instance is well-formed
– Defines the set of valid concrete values
– Only values in the valid set make sense as implementations of an

abstract value
– For implementors/debuggers/maintainers of the abstraction:

no object should ever violate the rep invariant
• Such an object has no useful meaning

Abstraction Function: maps Object → abstract value
– What the data structure means as an abstract value
– How the data structure is to be interpreted
– Only defined on objects meeting the rep invariant
– For implementors/debuggers/maintainers of the abstraction:

Each procedure should meet its spec (abstract values) by “doing
the right thing” with the concrete representation

2UW CSE 331 Winter 2018

Rep inv. constrains structure, not meaning

An implementation of insert that preserves the rep invariant:
public void insert(Character c) {
Character cc = new Character(encrypt(c));
if (!elts.contains(cc))
elts.addElement(cc);

}
public boolean member(Character c) {
return elts.contains(c);

}

Program is still wrong
– Clients observe incorrect behavior
– What client code exposes the error?
– Where is the error?
– We must consider the meaning
– The abstraction function helps us

CharSet s = new CharSet();
s.insert('a');
if (s.member('a'))

…

3UW CSE 331 Winter 2018

Abstraction function: rep→abstract value

The abstraction function maps the concrete representation to the
abstract value it represents

AF: Object → abstract value
AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”

Not executable because abstract values are “just” conceptual

The abstraction function lets us reason about what [concrete]
methods do in terms of the clients’ [abstract] view

4UW CSE 331 Winter 2018

Abstraction function and insert
Goal is to satisfy the specification of insert:

// modifies: this

// effects: thispost = thispre ∪ {c}

public void insert (Character c) {…}

The AF tells us what the rep means, which lets us place the blame
AF(CharSet this) = { c | c is contained in this.elts }

Consider a call to insert:
On entry, meaning is AF(thispre) = eltspre

On exit, meaning is AF(thispost) = AF(thispre) U {encrypt('a')}

What if we used this abstraction function instead?
AF(this) = { c | encrypt(c) is contained in this.elts }

= { decrypt(c) | c is contained in this.elts }
5UW CSE 331 Winter 2018

The abstraction function is a function

Why do we map concrete to abstract and not vice versa?

• It’s not a function in the other direction
– Example: lists [a,b] and [b,a] might each represent the

set {a,b}

• It’s not as useful in the other direction
– Purpose is to reason about whether our methods are

manipulating concrete representations correctly in terms of
the abstract specifications

6UW CSE 331 Winter 2018

Stack AF example
Abstract stack with array and
“top” index implementation

new() 0 0 0

push(17) 17 0 0

T
o
p
=
1

push(-9) 17 -9 0

T
o
p
=
2

T
o
p
=
0

stack = <>

stack = <17>

stack = <17,-9>

pop() 17 -9 0

stack = <17>
T
o
p
=
1

Abstract states are the same
stack = <17> = <17>

Concrete states are different
<[17,0,0], top=1>

≠
<[17,-9,0], top=1>

AF is a function
Inverse of AF is not a function

7UW CSE 331 Winter 2018

Benevolent side effects
Different implementation of member:

boolean member(Character c1) {
int i = elts.indexOf(c1);
if (i == -1)

return false;
// move-to-front optimization
Character c2 = elts.elementAt(0);
elts.set(0, c1);
elts.set(i, c2);
return true;

}

• Move-to-front speeds up repeated membership tests
• Mutates rep, but does not change abstract value

– AF maps both reps to the same abstract value
• Precise reasoning/explanation for “clients can’t tell”

r r'

a

op
 Þ

AF AF

8UW CSE 331 Winter 2018

For any correct operation…

9UW CSE 331 Winter 2018

Writing an abstraction function

Domain: all representations that satisfy the rep invariant
Range: can be tricky to denote

For mathematical entities like sets: easy
For more complex abstractions: give names to specification
– AF defines the value of each “specification field”

• (Course notes have examples of complex AFs with many
spec. fields, but it’s possible to be too complex – go for
simple, correct, understandable whenever possible)

Overview section of the specification should provide a notation for
writing abstract values

– Could implement a method for printing in this notation
• Useful for debugging
• Often a good choice for toString

10UW CSE 331 Winter 2018

Data Abstraction: Summary
Rep invariant

– Which concrete values represent abstract values
Abstraction function

– For each concrete value, which abstract value it represents

Together, they modularize the implementation
– Neither one is part of the ADT’s specification
– Both are needed to reason that an implementation satisfies

the specification

In practice, representation invariants are documented more often
and more carefully than abstraction functions
– A more widely understood and appreciated concept

11UW CSE 331 Winter 2018

