Next few lectures: two presentations on the web:
- Lecture notes
- Powerpoint slides
 They are complementary and you should understand both of them

HW1 out by tomorrow. Programming logic with no loops. Due Wednesday night, 11 pm.
Reasoning about code

Determine what facts are true as a program executes
 – Under what assumptions

Examples:
 – If \(x \) starts positive, then \(y \) is 0 when the loop finishes
 – Contents of the array that \(\text{arr} \) refers to are sorted
 – Except at one code point, \(x + y = z \)
 – For all instances of \(\text{Node} \ n \),
 \[n.\text{next} == \text{null} \lor n.\text{next}.\text{prev} == n \]
 – ...

UW CSE 331 Winter 2018
Why do this?

• Essential complement to testing, which we will also study
 – Testing: Actual results for some actual inputs
 – Logical reasoning: Reason about whole classes of inputs/states at once (“If $x > 0$, …”)
 • Prove a program correct (or find bugs trying), or (even better) develop program and proof together to get a program that is correct by construction
 • Understand why code is correct

• Stating assumptions is the essence of specification
 – “Callers must not pass null as an argument”
 – “Callee will always return an unaliased object”
 – …
Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why?

• Programmers rarely “use Hoare logic” in this much detail
 – For simple snippets of code, it’s overkill
 – Gets very complicated with objects and aliasing
 – But can be very useful to develop and reason about loops and data with subtle invariants
 • Examples: Homework 0, Homework 2

• Also it’s an ideal setting for the right logical foundations
 – How can logic “talk about” program states?
 – How does code execution “change what is true”?
 – What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World® (coming lectures)
Example

Forward reasoning:

- Suppose we initially know (or assume) \(w > 0 \)

 // w > 0
 x = 17;
 // w > 0 ∧ x == 17
 y = 42;
 // w > 0 ∧ x == 17 ∧ y == 42
 z = w + x + y;
 // w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59

 ...
- Then we know various things after, including \(z > 59 \)
Example

Backward reasoning:

– Suppose we want z to be negative at the end

 \[
 \text{\texttt{// } w + 17 + 42 < 0} \\
 x = 17; \\
 \text{\texttt{// } w + x + 42 < 0} \\
 y = 42; \\
 \text{\texttt{// } w + x + y < 0} \\
 z = w + x + y; \\
 \text{\texttt{// } z < 0}
 \]

– Then we know initially we need to know/assume $w < -59$

 • Necessary and sufficient
Forward vs. Backward, Part 1

• Forward reasoning:
 – Determine what follows from initial assumptions
 – Most useful for maintaining an invariant

• Backward reasoning
 – Determine sufficient conditions for a certain result
 • If result desired, the assumptions suffice for correctness
 • If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

- **Forward reasoning:**
 - Simulates the code (for many “inputs” “at once”)
 - Often more intuitive
 - But introduces [many] facts irrelevant to a goal

- **Backward reasoning**
 - Often more useful: Understand what each part of the code contributes toward the goal
 - “Thinking backwards” takes practice but gives you a powerful new way to reason about programs
Conditionals

// initial assumptions
if(...) {
 ... // also know test evaluated to true
} else {
 ... // also know test evaluated to false
}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression

2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches
Example (Forward)

Assume initially $x \geq 0$

```
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
    // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
    z = x;
    // ... ∧ z > 0
} else {
    // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
    z = x + 1;
    // ... ∧ z == 1
}
// ( ... ∧ z > 0) ∨ (... ∧ z == 1) (so z > 0)
```
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – [Named after its inventor, Tony Hoare]
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Some notation and terminology

- The “assumption” before some code is the **precondition**
- The “what holds after (given assumption)” is the **postcondition**

- Instead of writing pre/postconditions after `//`, write them in `{…}`
 - This is not Java
 - How Hoare logic has been written “on paper” for 40ish years
 - `{ w < -59 }
 - `x = 17;`
 - `{ w + x < -42 }
 - In pre/postconditions, `=` is equality, not assignment
 - Math’s “=”, which for numbers is Java’s `==`
 - `{ w > 0 ∧ x = 17 }
 - `y = 42;`
 - `{ w > 0 ∧ x = 17 ∧ y = 42 }`
What an assertion means

• An **assertion** (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)

• A **program state** is something that “given” a variable can “tell you” its contents
 – Or any expression that has no *side-effects*

• An assertion **holds** for a program state, if evaluating using the program state produces **true**
 – Evaluating a program variable produces its contents in the state
 – Can think of an assertion as representing the *set* of (exactly the) states for which it holds
A Hoare Triple

- A Hoare triple is two assertions and one piece of code:
 \[
 \{ P \} \quad S \quad \{ Q \}
 \]
 - \(P \) the precondition
 - \(S \) the code (statement)
 - \(Q \) the postcondition

- A Hoare triple \(\{ P \} \quad S \quad \{ Q \} \) is (by definition) valid if:
 - For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
 - Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
 - Else the Hoare triple is invalid
Examples

Valid or invalid?

- (Assume all variables are integers without overflow)

• \(\{x \neq 0\} \ y = x^2; \ \{y > 0\}\)
• \(\{z \neq 1\} \ y = z^2; \ \{y \neq z\}\)
• \(\{x \geq 0\} \ y = 2x; \ \{y > x\}\)
• \(\{\text{true}\} \ (\text{if}(x > 7) \ \{y=4;\} \text{ else } \{y=3;\}) \ \{y < 5\}\)
• \(\{\text{true}\} \ (x = y; \ z = x;) \ \{y=z\}\)
• \(\{x=7 \ \land \ y=5\}\)
 \((\text{tmp}=x; \ x=\text{tmp}; \ y=x;)\)
 \(\{y=7 \ \land \ x=5\}\)
Examples

Valid or invalid?
 – (Assume all variables are integers without overflow)

• \{x \neq 0\} \ y = x^2; \ \{y > 0\} \ \text{valid}
• \{z \neq 1\} \ y = z^2; \ \{y \neq z\} \ \text{invalid}
• \{x \geq 0\} \ y = 2x; \ \{y > x\} \ \text{invalid}
• \{true\} \ (if(x > 7) \ {y=4;} \ else \ {y=3;}) \ \{y < 5\} \ \text{valid}
• \{true\} \ (x = y; \ z = x;) \ \{y=z\} \ \text{valid}
• \{x=7 \land y=5\} \ \text{invalid}
 \ (tmp=x; \ x=tmp; \ y=x;)
 \ {y=7 \land x=5\}
Aside: assert in Java

- An assertion in Java is a statement with a Java expression, e.g.,
 \[\text{assert } x > 0 \text{ } \&\& \text{ } y < x; \]
- Similar to our assertions
 - Evaluate using a program state to get \text{true} or \text{false}
 - Uses Java syntax
- In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 - Unless assertion-checking is disabled
 - Later course topic
- This week: we are reasoning about the code, not running it on some input
The general rules

• So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

• Now: For each kind of construct there is a general rule
 – A rule for assignment statements
 – A rule for two statements in sequence
 – A rule for conditionals
 – [next lecture:] A rule for loops
 – …
Basic rule: Assignment

\{P\} \ x = e; \ \{Q\}

• Let Q′ be like Q except replace every x with e
• Triple is valid if:
 For all program states, if P holds, then Q′ holds
 – That is, P implies Q′, written P \implies Q′

• Example: \{z > 34\} \ y=z+1; \ \{y > 1\}
 – Q′ is \{z+1 > 1\}
Combining rule: Sequence

\[
{P} \ S1;S2 \ {Q}
\]

- Triple is valid if and only if there is an assertion \(R \) such that
 - \({P} S1 {R} \) is valid, and
 - \({R} S2 {Q} \) is valid

- Example: \(\{z \geq 1\} \ y=z+1; \ w=y*y; \ \{w > y\} \) (integers)
 - Let \(R \) be \(\{y > 1\} \)
 - Show \(\{z \geq 1\} \ y=z+1; \ \{y > 1\} \)
 - Use rule for assignments: \(z \geq 1 \) implies \(z+1 > 1 \)
 - Show \(\{y > 1\} \ w=y*y; \ \{w > y\} \)
 - Use rule for assignments: \(y > 1 \) implies \(y*y > y \)
Combining rule: Conditional

\{P\} \text{ if(b) S1 else S2} \{Q\}

- Triple is valid if and only if there are assertions \(Q_1, Q_2\) such that
 - \{\text{P} \land b\} S1 \{Q_1\} is valid, and
 - \{\text{P} \land \lnot b\} S2 \{Q_2\} is valid, and
 - \(Q_1 \lor Q_2\) implies \(Q\)

- Example: \{true\} (if(x > 7) y=x; else y=20;) \{y > 5\}
 - Let \(Q_1\) be \{y > 7\} (other choices work too)
 - Let \(Q_2\) be \{y = 20\} (other choices work too)
 - Use assignment rule to show \{true \land x > 7\} y=x; \{y>7\}
 - Use assignment rule to show \{true \land x \leq 7\} y=20; \{y=20\}
 - Indicate \(y>7 \lor y=20\) implies \(y>5\)
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Weaker vs. Stronger

If P_1 implies P_2 (written $P_1 \implies P_2$), then:
- P_1 is stronger than P_2
- P_2 is weaker than P_1

- Whenever P_1 holds, P_2 also holds
- So it is more (or at least as) “difficult” to satisfy P_1
 - The program states where P_1 holds are a subset of the program states where P_2 holds
- So P_1 puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

• \(x = 17 \) is stronger than \(x > 0 \)

• \(x \text{ is prime} \) is neither stronger nor weaker than \(x \text{ is odd} \)

• \(x \text{ is prime and } x > 2 \) is stronger than \(x \text{ is odd and } x > 2 \)

• ...
Why this matters to us

• Suppose:
 – \(\{P\}S\{Q\} \), and
 – \(P \) is weaker than some \(P_1 \), and
 – \(Q \) is stronger than some \(Q_1 \)

• Then: \(\{P_1\}S\{Q\} \) and \(\{P\}S\{Q_1\} \) and \(\{P_1\}S\{Q_1\} \)

• Example:
 – \(P \) is \(x \geq 0 \)
 – \(P_1 \) is \(x > 0 \)
 – \(S \) is \(y = x+1 \)
 – \(Q \) is \(y > 0 \)
 – \(Q_1 \) is \(y \geq 0 \)
So…

• For backward reasoning, if we want $\{P\}S\{Q\}$, we could instead:
 – Show $\{P_1\}S\{Q\}$, and
 – Show $P \implies P_1$

• Better, we could just show $\{P_2\}S\{Q\}$ where P_2 is the weakest precondition of Q for S
 – Weakest means the most lenient assumptions such that Q
 will hold after executing S
 – Any precondition P such that $\{P\}S\{Q\}$ is valid will be
 stronger than P_2, i.e., $P \implies P_2$

• Amazing (?): Without loops/methods, for any S and Q, there
 exists a unique weakest precondition, written $wp(S,Q)$
 – Like our general rules with backward reasoning
Weakest preconditions

- \(\text{wp}(x = e; Q) \) is \(Q \) with each \(x \) replaced by \(e \)
 - Example: \(\text{wp}(x = y*y; x > 4) = y*y > 4 \), i.e., \(|y| > 2 \)

- \(\text{wp}(S_1; S_2, Q) \) is \(\text{wp}(S_1, \text{wp}(S_2, Q)) \)
 - i.e., let \(R \) be \(\text{wp}(S_2, Q) \) and overall \(\text{wp} \) is \(\text{wp}(S_1, R) \)
 - Example: \(\text{wp}((y=x+1; z=y+1;) , z > 2) = (x + 1) + 1 > 2 \), i.e., \(x > 0 \)

- \(\text{wp}(\text{if } b \text{ } S_1 \text{ else } S_2, Q) \) is this logic formula:
 \[
 (b \wedge \text{wp}(S_1,Q)) \lor (!b \wedge \text{wp}(S_2,Q))
 \]
 - (In any state, \(b \) will evaluate to either true or false…)
 - (You can sometimes then simplify the result)
Simple examples

• If S is $x = y*y$ and Q is $x > 4$, then $wp(S,Q)$ is $y*y > 4$, i.e., $|y| > 2$

• If S is $y = x + 1; z = y - 3;$ and Q is $z = 10$, then $wp(S,Q)$...

 $= wp(y = x + 1; z = y - 3; z = 10)$
 $= wp(y = x + 1; wp(z = y - 3; z = 10))$
 $= wp(y = x + 1; y-3 = 10)$
 $= wp(y = x + 1; y = 13)$
 $= x+1 = 13$
 $= x = 12$
Bigger example

\[
S \text{ is if } (x < 5) \{ \\
\quad x = x^2; \\
\} \text{ else } \{ \\
\quad x = x+1; \\
\}
\]

\[Q \text{ is } x \geq 9\]

\[
wp(S, x \geq 9) = (x < 5 \land wp(x = x^2;, x \geq 9)) \lor (x \geq 5 \land wp(x = x+1;, x \geq 9)) = (x < 5 \land x^2 \geq 9) \lor (x \geq 5 \land x+1 \geq 9) = (x \leq -3) \lor (x \geq 3 \land x < 5) \lor (x \geq 8)
\]
If-statements review

Forward reasoning

\[
\begin{align*}
\{P\} \\
\text{if } B \\
\quad \{P \land B\} \\
\quad S1 \\
\quad \{Q1\} \\
\text{else} \\
\quad \{P \land \neg B\} \\
\quad S2 \\
\quad \{Q2\} \\
\{Q1 \lor Q2\}
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{ (B \land \wp(S1, Q)) \lor (\neg B \land \wp(S2, Q)) \} \\
\text{if } B \\
\quad \{wp(S1, Q)\} \\
\quad S1 \\
\quad \{Q\} \\
\text{else} \\
\quad \{wp(S2, Q)\} \\
\quad S2 \\
\quad \{Q\} \\
\{Q\}
\end{align*}
\]
“Correct”

- If $wp(S, Q)$ is $true$, then executing S will always produce a state where Q holds
 - $true$ holds for every program state
One more issue

• With forward reasoning, there is a problem with assignment:
 – Changing a variable can affect other assumptions

• Example:

  ```
  {true}
  w=x+y;
  {w = x + y;}
  x=4;
  {w = x + y ∧ x = 4}
  y=3;
  {w = x + y ∧ x = 4 ∧ y = 3}
  But clearly we do not know w=7!
  ```
The fix

- When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable.
 - So you refer to the “old contents”

- Corrected example:
  ```
  \{true\}
  w=x+y;
  \{w = x + y;\}
  x=4;
  \{w = x1 + y \land x = 4\}
  y=3;
  \{w = x1 + y1 \land x = 4 \land y = 3\}
  ```
Useful example: swap

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”

\[
\begin{align*}
\{x = x_pre \land y = y_pre\} \\
\text{tmp} &= x; \\
\{x = x_pre \land y = y_pre \land \text{tmp}=x\} \\
x &= y; \\
\{x = y \land y = y_pre \land \text{tmp}=x_pre\} \\
y &= \text{tmp}; \\
\{x = y_pre \land y = \text{tmp} \land \text{tmp}=x_pre\}
\end{align*}
\]