CSE 331
Software Design & Implementation

Hal Perkins
Winter 2018
Lecture 2 — Reasoning About Code With Logic

UW CSE 331 Winter 2018

Administrivia

* Next few lectures: two presentations on the web:
— Lecture notes
— Powerpoint slides
They are complementary and you should understand both of them

« HW1 out by tomorrow. Programming logic with no loops. Due
Wednesday night, 11 pm.

UW CSE 331 Winter 2018 2

Reasoning about code

Determine what facts are true as a program executes
— Under what assumptions

Examples:
— If x starts positive, then y is 0 when the loop finishes

— Contents of the array that arr refers to are sorted

— Exceptatone code point,x + vy == z
— For all instances of Node n,
n.next == null \V n.next.prev == n

UW CSE 331 Winter 2018

Why do this?

« Essential complement to testing, which we will also study
— Testing: Actual results for some actual inputs

— Logical reasoning: Reason about whole classes of
inputs/states at once (“If x > 0, ...7)

* Prove a program correct (or find bugs trying), or (even
better) develop program and proof together to get a
program that is correct by construction

» Understand why code is correct

« Stating assumptions is the essence of specification
— “Callers must not pass null as an argument’

— “Callee will always return an unaliased object”

UW CSE 331 Winter 2018

Our approach

« Hoare Logic: a 1970s approach to logical reasoning about code

— For now, consider just variables, assignments, if-statements,
while-loops
« S0 no objects or methods

« This lecture: The idea, without loops, in 3 passes
1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.

3. Definition of weaker/stronger and weakest-precondition

* Next lecture: Loops

UW CSE 331 Winter 2018

Why"?

 Programmers rarely “use Hoare logic” in this much detalil
— For simple snippets of code, it's overkill
— Gets very complicated with objects and aliasing

— But can be very useful to develop and reason about loops and
data with subtle invariants

« Examples: Homework 0, Homework 2

« Also it's an ideal setting for the right logical foundations
— How can logic “talk about” program states?
— How does code execution “change what is true™?
— What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does
happen All the Time in The Real World® (coming lectures)

UW CSE 331 Winter 2018 6

Example

Forward reasoning:
— Suppose we initially know (or assume)w > 0

// w >0
x = 17;
// w>0 A x == 17
y = 42;
// w>0 A x=17 AN y == 42
Z

wW+ X + vy,
// w>0 A x==17 Ny ==42 N z > 59

— Then we know various things after, including z > 59

UW CSE 331 Winter 2018

Example

Backward reasoning:
— Suppose we want z to be negative at the end
// w + 17 + 42 < 0

x =17;
// w+ x + 42 < 0
y = 42;

// w+ x +y <O

Z

wW+ X + vy,
// z < 0

— Then we know initially we need to know/assume w < -59
* Necessary and sufficient

UW CSE 331 Winter 2018

Forward vs. Backward, Part 1

« Forward reasoning:
— Determine what follows from initial assumptions
— Most useful for maintaining an invariant

« Backward reasoning
— Determine sufficient conditions for a certain result
* |If result desired, the assumptions suffice for correctness
* If result undesired, the assumptions suffice to trigger bug

UW CSE 331 Winter 2018

Forward vs. Backward, Part 2

« Forward reasoning:
— Simulates the code (for many “inputs
— Often more intuitive
— But introduces [many] facts irrelevant to a goal

L1

at once”)

« Backward reasoning

— Often more useful: Understand what each part of the code
contributes toward the goal

— “Thinking backwards” takes practice but gives you a
powerful new way to reason about programs

UW CSE 331 Winter 2018 10

Conditionals

// initial assumptions
1f(..) {
... // also know test evaluated to true

} else {
.. // also know test evaluated to false

}
// either branch could have executed
Two key ideas:

1. The precondition for each branch includes information
about the result of the test-expression

2. The overall postcondition is the disjunction (“or”) of the
postcondition of the branches

UW CSE 331 Winter 2018

11

Example (Forward)

Assume initially x >= 0
// x
z = 0;
// x>0 A z ==
if(x '= 0) {
// x> 0 AN z=0 A x '=0 (so x > 0)

>= 0

zZ = X;
// ..\ z>0
} else {
// x> 0 AN z=0 A !'(x!'=0) (so x == 0)
z =x + 1;
// .. \ z ==

}
// (.. Nz>0)V (. A\ z=1) (soz >0)

UW CSE 331 Winter 2018 12

Our approach

Hoare Logic, a 1970s approach to logical reasoning about code
— [Named after its inventor, Tony Hoare]

— Considering just variables, assignments, if-statements,
while-loops
* S0 no objects or methods

This lecture: The idea, without loops, in 3 passes
1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.

3. Definition of weaker/stronger and weakest-precondition

Next lecture: Loops

UW CSE 331 Winter 2018 13

Some notation and terminology

* The “assumption” before some code is the precondition
« The “what holds after (given assumption)” is the postcondition

» Instead of writing pre/postconditions after //, write them in {...}

— This is not Java

— How Hoare logic has been written “on paper” for 40ish years
{ w< =59 }
x =17;
{ w+ x < -42 }

— In pre/postconditions, = is equality, not assignment

« Math’s “=", which for numbers is Java’s ==

{w>0 A x=17}
y = 42;
{w>0 A x=17 A y =42}

UW CSE 331 Winter 2018

\What an assertion means

« An assertion (pre/postcondition) is a logical formula that can
refer to program state (e.g., contents of variables)

« A program state is something that “given” a variable can “tell
you” its contents

— Or any expression that has no side-effects

* An assertion holds for a program state, if evaluating using the
program state produces true

— Evaluating a program variable produces its contents in the
state

— Can think of an assertion as representing the set of (exactly
the) states for which it holds

UW CSE 331 Winter 2018 15

A Hoare Triple

« A Hoare triple is two assertions and one piece of code:
{P} S {Q}
— P the precondition
— S the code (statement)
— Q the postcondition

A Hoare triple {P} S {Q} is (by definition) valid if:
— For all states for which P holds, executing S always
produces a state for which Q holds
— Less formally: If P is true before S, then Q must be true after

— Else the Hoare triple is invalid

UW CSE 331 Winter 2018 16

Examples

Valid or invalid?
— (Assume all variables are integers without overflow)

« {x !'= 0} y = x*x; {y > 0}
« {z !'=1} y = z*z; {y '= z}
* {x >= 0} y = 2*x; {y > x}
* {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5}
* {true} (x =y; z = x;) {y=z}
e {x=7 A y=5}
(tmp=x; x=tmp,; y=x;)
{y=7 A\ x=5}

UW CSE 331 Winter 2018 17

Examples

Valid or invalid?
— (Assume all variables are integers without overflow)

e {x '= 0} yv = x*x; {y > 0} valid

e {z '= 1} y = z*z; {y '= z} invalid

e {x >= 0} yv = 2*x; {y > x} Iinvalid

e {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5} valid
e {true} (x =y; z = x;) {y=z} vald

e {x=7 A y=5} invalid
(tmp=x; x=tmp,; y=x;)
{y=7 N\ x=5}

UW CSE 331 Winter 2018 18

Aside: assert In Java

« An assertion in Java is a statement with a Java expression, e.g.,
assert x > 0 && y < x;
« Similar to our assertions
— Evaluate using a program state to get true or false
— Uses Java syntax

* In Java, this is a run-time thing: Run the code and raise an
exception if assertion is violated

— Unless assertion-checking is disabled
— Later course topic

* This week: we are reasoning about the code, not running it on
some input

UW CSE 331 Winter 2018 19

The general rules

« So far: Decided if a Hoare triple was valid by using our
understanding of programming constructs

« Now: For each kind of construct there is a general rule
— A rule for assignment statements
— A rule for two statements in sequence
— A rule for conditionals
— [next lecture:] A rule for loops

UW CSE 331 Winter 2018

20

Basic rule: Assignment

{P} x = e; {Q}

 Let Q’be like Q except replace every x with e

* Triple is valid if:
For all program states, if P holds, then @’ holds
— Thatis, P implies Q’, written P => Q'

« Example: {z > 34} y=z+1l; {y > 1}
~ Q" is {z+1 > 1}

UW CSE 331 Winter 2018

21

Combining rule: Sequence

{P} S81;82 {Q}

Triple is valid if and only if there is an assertion R such that
— {P}S1{R} is valid, and
- {R}S2{Q} isvalid

Example: {z >= 1} y=z+1; w=y*y; {w > y} (integers)
— LetRbe {y > 1}
— Show {z >= 1} y=z+1; {y > 1}

« Use rule for assignments: z >= 1 implies z+1 > 1
— Show {y > 1} w=y*y; {w > y}

« Use rule for assignments:y > 1 impliesy*y > y

UW CSE 331 Winter 2018

22

Combining rule: Conditional

{P} if(b) S1 else S2 {Q}

Triple is valid if and only if there are assertions Q1 ,Q2 such that
- {P A Db}sS1{Q1} is valid, and
- {P A 'b}s2{Q2} is valid, and
- 01 V Q2 implies Q

Example: {true} (if(x > 7) y=x; else y=20;) {y > 5}
— LetQl be {y > 7} (other choices work t00)

— LetQ2 be {y = 20} (other choices work to00)

— Use assignment rule to show {true A x > 7}y=x; {y>7}

— Use assignment rule to show {true A x <= 7}y=20; {y=20}
— Indicate y>7 V y=20 implies y>5

UW CSE 331 Winter 2018 23

Our approach

« Hoare Logic, a 1970s approach to logical reasoning about code

— Considering just variables, assignments, if-statements,
while-loops
« S0 no objects or methods

« This lecture: The idea, without loops, in 3 passes
1. High-level intuition of forward and backward reasoning
2. Precise definition of logical assertions, preconditions, etc.

3. Definition of weaker/stronger and weakest-precondition

* Next lecture: Loops

UW CSE 331 Winter 2018 24

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:

— P1 is stronger than P2
— P2 is weaker than P1 P2

« \Whenever P1 holds, P2 also holds
« Soitis more (or at least as) “difficult” to satisfy P1

— The program states where P1 holds are a subset of the
program states where P2 holds

« So P1 puts more constraints on program states
« So it's a stronger set of obligations/requirements

UW CSE 331 Winter 2018 25

Examples

« x = 17 isstrongerthanx > 0

« x is prime is neither stronger nor weaker than x is odd

« X is prime and x > 2 is stronger than
x is odd and x > 2

UW CSE 331 Winter 2018

26

Why this matters to us

« Suppose:
- {P}s{Q}, and
— P is weaker than some P1, and
— Qs stronger than some Q1

« Then: {P1}S{Q} and {P}S{Ql} and {P1}S{Q1l}

 Example:
- P Isx>0
- Plisx>0
- S Isy = x+1
-Q isy>0
- Qlisy >0

UW CSE 331 Winter 2018

So...

For backward reasoning, if we want {P}S{Q}, we could instead:
— Show {P1}Ss{Q}, and
— Show P => P1

Better, we could just show {P2}S{Q} where P2 is the weakest
precondition of Q for S

— Weakest means the most lenient assumptions such that Q
will hold after executing S

— Any precondition P such that {P}S{Q} is valid will be
stronger than P2, i.e., P => P2

Amazing (?): Without loops/methods, for any S and Q, there
exists a unique weakest precondition, written wp(s,Q)

— Like our general rules with backward reasoning

UW CSE 331 Winter 2018 28

Weakest preconditions

« wp(x = e;, Q)is Qwith each x replaced by e
— Example: wp(x = y*y;,x > 4)=y*y > 4,ie., |y| > 2

« wWp(S1l;S2,Q)is wp(S1,wp(S2,0))
— i.e., let R be wp(s2,Q) and overall wp is wp(S1,R)
— Example: wp((y=x+1; z=y+l1l;),z > 2)=
(x + 1)+1 > 2,ie.,x > 0

« wWp(if b S1 else S2, Q)is this logic formula:
(b A wp(s1,Q)) V ('b A wp(s2,9))

— (In any state, b will evaluate to either true or false...)
— (You can sometimes then simplify the result)

UW CSE 331 Winter 2018 29

Simple examples

« IfSisx = y*yandQisx > 4,
then wp(S,Q)is y*y > 4,i.e., |y| > 2

e IfSisy =x+1; z =y - 3;andQisz = 10,
then wp(s,Q) ...
=wp(ly =x+1;, z=y - 3;,z = 10)
=wp(ly = x + 1;, wp(z =y - 3;,z = 10))
=wp(ly = x + 1;, y-3 = 10)
=wp(ly =x + 1;, y = 13)
= x+1 13
=x = 12

UW CSE 331 Winter 2018 30

Bigger example

S is i1f (x < 5) {

X = xX*x;
} else {
X = x+1;

}
Q is x >= 9

wp(S, x >= 9)
=(x < 5 /A wp(x = x*x;,x >= 9))
V (x> 5 Awp(x = x+1;,x >= 9))
=(x < 5 A\ x*x >= 9)
V (x >= 5 A x+1 >= 9)
=(x <= -3) V(x> 3 A x < 5)

Ve >=8) T
4-32-10123456789

UW CSE 331 Winter 2018 31

If-statements review

Forward reasoning

{P}
if B
{P A B}
Sl
{Q1}
else
{P A 'B}
S2
{Q2}
Q1 V Q2}

Backward reasoning

{(B A\ wp(S1,Q)) V
(IB A\ wp(S2, Q))}
if B
{wp(S1, Q)}
S1
{Q}
else
{wp(S2, Q)}
S2
{Q}
{Q}

UW CSE 331 Winter 2018

32

“Correct”

« |fwp(s,Q)is true, then executing S will always produce a state
where Q holds

— true holds for every program state

UW CSE 331 Winter 2018 33

One more issue

With forward reasoning, there is a problem with assignment:
— Changing a variable can affect other assumptions

Example:
{true}

wW=x+y;
{w=x+vy;}
=4 ;

iw=x+y N x

4}

y=3;

iw=x+y ANx=4 N\y= 3}
But clearly we do not know w=7!

UW CSE 331 Winter 2018

34

The fix

When you assign to a variable, you need to replace all other
uses of the variable in the post-condition with a different variable

— So you refer to the “old contents”

Corrected example:

{true}

wW=x+y;

{w=x+vy;}

=4 ;
iw==x1+y A x = 4}
y=3;

fw==x1+yl AN x=4 A y= 3}

UW CSE 331 Winter 2018 35

Useful example: swap

« Swap contents

— Give a name to initial contents so we can refer to them in the
post-condition

— Just in the formulas: these “names” are not in the program
— Use these extra variables to avoid “forgetting” “connections”

{x = x pre \ y = y pre}

tmp = x;
{x = x pre \ y =y pre A\ tmp=x}
X = y;
{x =y Ny =y pre \ tmp=x pre}
y = tmp;

{x =y pre \ y = tmp /\ tmp=x_pre}

UW CSE 331 Winter 2018 36

