
	 CSE	331	Winter	2018	Homework	2	

	

	
1	

Directions:	
- Due	Tuesday,	January	16,	by	11	pm.			
- Turn	in	your	work	online	using	gradescope.		You	should	turn	in	a	single	pdf	file.		You	can	have	

more	than	one	answer	per	page,	but	please	try	to	avoid	page	breaks	in	the	middle	of	a	question	
if	you	can	by	inserting	page	breaks	between	questions	as	needed.	

- Your	file	should	be	no	larger	than	3MB.		Scanned	copies	of	hand-written	documents	are	fine	as	
long	as	they	are	legible	when	printed.	

- Feel	free	to	rewrite	the	problems	and	solutions	on	a	separate	sheet	–	you	do	not	have	to	turn	in	
these	specific	pages	with	the	blanks	filled	in.	

- You	may	use	any	standard	symbols	for	“and”	and	“or”	(&	and	|,	∧	and	∨,	etc.)	
- If	no	precondition	is	needed	for	a	code	sequence,	write	{true}	to	denote	the	trivial	precondition.	
- As	in	Homework	1,	assume	that	all	numeric	values	are	integers	and	that	integer	overflow	will	

never	occur.	
- Further	assume	that	division	is	integer	division	like	in	Java	(truncating	towards	0).	

	
- When	proving	code	correct,	you	should	write	down	all	the	intermediate	steps	unless	directed	

otherwise.		The	slides	from	class	often	omit	steps	because	we	need	the	“key	idea”	to	fit	on	a	
slide	in	a	large-enough	font.		The	reading	notes	may	be	a	better	guide	in	how	detailed	to	be,	
even	on	Problem	1,	which	refers	to	an	algorithm	from	class.	

	
1. (Warmup)	In	class,	we	developed	an	algorithm	to	find	the	largest	value	in	a	non-empty	list	of	

integers	items[0..size-1].	In	our	code,	the	loop	had	the	following	invariant:		
	
max = largest value in items[0..k-1] (or	max = max(items[0..k-1])	
	
Suppose	we	had	used	the	following	slightly	different	invariant	instead:	
	
max = largest value in items[0..k]	
	
Rework	the	code	and	proof	in	the	example	to	use	this	new	invariant	instead	of	the	original	one	and	
show	that	the	modified	code	is	correct.	Insert	or	modify	assertions	and	code	as	needed.		
	
After	solving	this	problem,	give	a	brief	description	of	how	this	change	to	the	invariant	affected	the	
algorithm	and	the	associated	proof.	What	were	the	major	changes?	Did	this	change	make	the	code	
easier	or	harder	to	write	or	prove	compared	to	the	original	version?	Why?	(You	should	be	able	to	
keep	your	answers	brief	and	to	the	point.)	
	

	 CSE	331	Winter	2018	Homework	2	

	

	
2	

2. Given	two	non-negative	integers	x	and	y,	we	can	calculate	the	exponential	function	xy	(x	raised	to	
the	power	y)	using	repeated	multiplications	by	x	a	total	of	y	times.	The	following	code	is	alleged	to	
compute	xy	much	more	quickly	(it	supposedly	takes	time	proportional	to	log	y).	
	
int expt(int x, int y) {
 int z = 1;
 while (y > 0) {
 if (y % 2 == 0) {
 y = y/2;
 x = x*x;
 } else {
 z = z*x;
 y = y-1;
 }
 }
 return z;
}	
	
Give	a	proof	that	this	code	is	correct.	A	suitable	precondition	for	the	function	would	be	x=xpre &&
y=ypre && xpre>=0 && ypre>=0,	and	an	appropriate	postcondition	would	be	that	the	returned	
value	z=xpreypre.	(We	define	00	to	be	1	for	this	problem.		The	superscript	(exponent)	in	the	
postcondition	should	be	ypre,	but	the	word	processor	won’t	cooperate	and	allow	a	subscripted	
superscript.)	You	will	need	to	develop	a	loop	invariant	and	pre-	and	post-conditions	for	the	
statements	inside	the	loop,	and	verify	that	the	code	has	the	necessary	properties	to	ensure	that	
these	assertions	hold.	You	are	not	required	to	give	pre-	and	post-conditions	for	each	individual	
assignment	statement	inside	the	if	if	these	are	not	needed	to	clearly	show	the	code	is	correct,	but	
you	should	include	whatever	is	needed	so	that	the	grader	can	follow	your	proof	and	see	that	it	is	
valid.		You	do	not	need	to	prove	that	the	algorithm	runs	in	log	y	time.	
	

3. We	are	given	an	integer	array	a	containing	n	elements	and	would	like	to	develop	an	algorithm	to	
rearrange	the	array	elements	as	follows	and	prove	that	the	algorithm	is	correct.	If	the	original	
elements	of	the	array	are	A[0], A[1], ..., A[n-1],	we	would	like	to	rearrange	the	array	so	
that	all	of	the	elements	less	than	or	equal	to	the	original	value	in	A[0]	are	at	the	beginning	of	the	
array,	followed	by	the	value	originally	stored	in	A[0],	followed	by	all	the	elements	in	the	original	
array	that	are	larger	than	A[0].	In	pictures,	the	postcondition	we	want	is	the	following:	
	
 0 n
 +-------------+----+---------------+
 a| <= A[0] |A[0]| >A[0] |
 +-------------+----+---------------+	
	

	 CSE	331	Winter	2018	Homework	2	

	

	
3	

The	operation	swap(a[i],a[j])	can	be	used	to	interchange	any	pair	of	elements	in	the	array,	
and	this	is	the	only	operation	that	can	be	used	to	modify	the	contents	of	the	array.	(As	a	result	of	
this	restriction,	the	array	will	be	a	permutation	of	its	original	contents,	so	you	do	not	need	to	prove	
this.)	Your	code	should	run	in	linear	(O(n))	time.	
	
You	should	develop	a	suitable	loop	invariant,	then	write	code	to	partition	the	array	using	that	
invariant	and	prove	that	when	the	code	terminates	the	postcondition	has	been	established.	You	do	
not	need	to	provide	assertions	for	every	trivial	statement	in	the	code,	but	there	should	be	sufficient	
annotations	so	that	the	correctness	of	your	code	is	obvious.	You	do	not	need	to	write	a	complete	
method,	just	the	necessary	loop	and	supporting	statements,	including	any	necessary	initialization	
and	final	statements	before	and	after	the	loop.	
	
Hints:	As	you	are	partitioning	the	values	in	the	array,	you	might	find	it	simpler	if	you	are	not	
constantly	moving	the	original	value	from	A[0]	into	new	locations.	Try	different	invariants	and	see	
which	one	makes	things	simplest.	Also	remember	that	you	can	include	additional	statements	before	
and	after	the	main	loop	if	needed	to	establish	the	loop	invariant	or	the	postcondition.	
	
	

4. Give	an	implementation	of	the	algorithm	selection	sort	and	a	proof	of	its	correctness.	The	algorithm	
should	sort	an	array	a	containing	n	integer	values.	The	precondition	is	that	the	array	a	contains	n	
integer	values	in	some	unknown	order.	The	postcondition	is	that	the	array	holds	a	permutation	of	
the	original	values	such	that	a[0] <= a[1] <= ... <= a[n-1].	As	in	the	previous	problem,	
you	should	use	the	operation	swap(a[i],a[j])	to	interchange	array	elements	when	needed.	
	
Selection	sort	proceeds	as	follows.	First	we	find	the	smallest	element	in	the	original	array	and	swap	
it	with	the	original	value	in	a[0].	(If	a[0]	is	the	smallest	element	in	the	original	array	it	is	fine	to	
swap	it	with	itself	to	avoid	having	additional	special	cases	in	the	code.)	Next	we	find	the	smallest	
element	in	the	remaining	part	of	the	array	beginning	at	a[1]	and	swap	it	with	a[1].	Then	we	find	
the	smallest	element	in	the	remaining	part	of	the	array	starting	at	a[2]	and	move	it	to	the	front	of	
that	part	of	the	array.	This	search-and-swap	operation	continues	on	the	successively	smaller	
remaining	parts	of	the	array	until	all	elements	are	sorted.	
	
As	with	the	previous	problem,	you	should	develop	suitable	invariants	for	the	nested	loops	needed	to	
perform	the	sort,	then	write	the	code	and	annotate	it	with	appropriate	assertions	so	that	it	is	clear	
that	your	code	is	correct	and	that	when	it	terminates	the	array	is	sorted.	
	
Do	not	introduce	additional	methods	or	functions	to	solve	parts	of	the	problem.		The	program	and	
proof	are	simpler	if	you	write	a	straightforward	pair	of	nested	loops.	

	

