
Section 9
MATERIAL PULLED FROM LAST SECTION AND LAST YEAR’S SLIDES

Today’s Agenda
Administrivia

Review Design Patterns

Design Pattern Worksheet

Course Review

Administrivia
HW9 due tonight at 10PM

Friday – Final Exam
◦ In regular lecture room

Design Patterns
Creational patterns: get around Java constructor inflexibility

◦ Sharing: singleton, interning, flyweight

◦ Telescoping constructor fix: builder

◦ Returning a subtype: factories

Structural patterns: translate between interfaces
◦ Adapter: same functionality, different interface

◦ Decorator: different functionality, same interface

◦ Proxy: same functionality, same interface, restrict access

◦ All of these are types of wrappers



Design Patterns

What pattern would you use to…
◦ add a scroll bar to an existing window object in Swing

◦ Decorator

◦ We have an existing object that controls a communications channel. We would like 
to provide the same interface to clients but transmit and receive encrypted data 
over the existing channel.
◦ Proxy

Adapter, Builder, Decorator, Factory, Flyweight, Intern, Model-View-Controller (MVC), 
Proxy, Singleton, Visitor, Wrapper

Worksheet time!
Solutions will be posted online

Course Review Stronger vs Weaker (one more time!)
Requires more?

Promises more? (stricter specifications on what the effects entail)

weaker

stronger



Stronger vs Weaker

A. @requires key is a key in this and key != null

@return the value associated with key

B. @return the value associated with key if key is a key 
in this, or null if key is not associated with any 
value

C. @return the value associated with key

@throws NullPointerException if key is null

@throws NoSuchElementException if key is not a 

key this

@requires key is a key in this

@return the value associated with key

@throws NullPointerException if key is null

WEAKER

STRONGER

NEITHER

Subtypes & Subclasses
Subtypes are substitutable for supertypes

If Foo is a subtype of Bar, G<Foo> is a NOT a subtype of G<Bar>
◦ Aliasing resulting from this would let you add objects of type Bar to G<Foo>, which would be bad!

◦ Example:
List<String> ls = new ArrayList<String>(); 

List<Object> lo = ls; 

lo.add(new Object()); 

String s = ls.get(0);

Subclassing is done to reuse code (extends)
◦ A subclass can override methods in its superclass

Typing and Generics
<?> is a wildcard for unknown

◦ Upper bounded wildcard: type is wildcard or subclass
◦ Eg: List<? extends Shape>

◦ Illegal to write into (no calls to add!) because we can’t guarantee type safety.

◦ Lower bounded wildcard: type is wildcard or superclass
◦ Eg: List<? super Integer>

◦ May be safe to write into.

Subtypes & Subclasses
class Student extends Object { ... }

class CSEStudent extends Student { ... }

List<Student> ls;

List<? extends Student> les;

List<? super Student> lss;

List<CSEStudent> lcse;

List<? extends CSEStudent> lecse;

List<? super CSEStudent> lscse;

Student scholar;

CSEStudent hacker;

ls = lcse;

les = lscse;

lcse = lscse;

les.add(scholar);

lscse.add(scholar);

lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

x
x
x
x
x

x



Subtypes & Overriding
class Foo extends Object {

Shoe m(Shoe x, Shoe y){ ... }

}

class Bar extends Foo {...}

Method Declarations in Bar
• The result is method overriding
• The result is method overloading

• The result is a type-error

• None of the above

•FootWear m(Shoe x, Shoe y) { ... }

•Shoe m(Shoe q, Shoe z) { ... }

•HighHeeledShoe m(Shoe x, Shoe y) { ... }

•Shoe m(FootWear x, HighHeeledShoe y) { ... }

•Shoe m(FootWear x, FootWear y) { ... }

•Shoe m(Shoe x, Shoe y) { ... }

•Shoe m(HighHeeledShoe x, HighHeeledShoe y) { ... }

•Shoe m(Shoe y) { ... }

•Shoe z(Shoe x, Shoe y) { ... }

Object
↓

Foo

↓
Bar

Footwear
↓

Shoe

↓
HighHeeledShoe

Method Declarations in Bar
• The result is method overriding
• The result is method overloading

• The result is a type-error

• None of the above

•FootWear m(Shoe x, Shoe y) { ... } type-error

•Shoe m(Shoe q, Shoe z) { ... } overriding

•HighHeeledShoe m(Shoe x, Shoe y) { ... } overriding

•Shoe m(FootWear x, HighHeeledShoe y) { ... } overloading

•Shoe m(FootWear x, FootWear y) { ... } overloading

•Shoe m(Shoe x, Shoe y) { ... } overriding

•Shoe m(HighHeeledShoe x, HighHeeledShoe y) { ... } overloading

•Shoe m(Shoe y) { ... } overloading

•Shoe z(Shoe x, Shoe y) { ... } none (new method declaration)

Object
↓

Foo

↓
Bar

Footwear
↓

Shoe

↓
HighHeeledShoe

Exam
You got this!

We believe in you!

Friday (tomorrow) 1:10PM!


