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Subtyping Stuffs

Subtypes are substitutable

Subtypes are substitutable for supertypes
• Instances of subtype won't surprise client by failing to satisfy the supertype's specification
• Instances of subtype won't surprise client by having more expectations than the supertype's

specification
This follows the “Principle of Least Surprise” 

We say that B is a true subtype of A if B has a stronger specification than A
• This is not the same as a Java subtype
• Java subtypes that are not true subtypes are confusing and dangerous

• But unfortunately common poor-design L

Subtyping vs. subclassing
Substitution (subtype) — a specification notion

• B is a subtype of A iff an object of B can masquerade as an object of A 
in any context

• About satisfiability (behavior of a B is a subset of A’s spec)

Inheritance (subclass) — an implementation notion
• Factor out repeated code 
• To create a new class, write only the differences

Java purposely merges these notions for classes:
• Every subclass is a Java subtype

• But not necessarily a true subtype



Cheat Sheet
• B is a true subtype of A. How do I code this up?

• Use java subclassing! (B extends A)

• B is not a true subtype of A, but shares a lot with A. How do I code this 
up?
• It's tempting to use java subclassing when B is not a true subtype 

of A (Square/Rectangle)
• avoid it, since you might run into issues like the 

square/rectangle issue
• But I don't want to duplicate all the code in A. Duplication is evil.

• you're right! try Composition. (B has a A)

• B is a true subtype of A, but has an entirely different implementation. I 
don't want to inherit anything, but Java needs to know they're the 
same type for polymorphism to work. How do I code this up?
• A and B should implement the same interface.

Cheat Sheet

• B is a true subtype of A, but A is an existing class that I can't modify 
and it's not subclass-ready (Hashtable/InstrumentedHashTable)
• Composition will be helpful here too! (B has a A) 
• And, if possible, have B implement the same interface as A, for 

polymorphism.

• D is a true subtype of A and of T. Java only has single inheritance. How 
do I code up this relationship?
• Use interfaces. D can implement interface A and interface T. Or 

extend one as a class and implement the other as an interface. 

Assertions & Exceptions

What to do when something goes wrong
Fail early, fail friendly 

Goal 1:  Give information about the problem
• To the programmer – a good error message is key!
• To the client code: via exception or return-value or …

Goal 2:  Prevent harm
Abort:  inform a human

• Perform cleanup actions, log the error, etc.
Re-try:

• Problem might be transient
Skip a subcomputation:

• Permit rest of program to continue
Fix the problem? 

• Usually infeasible to repair from an unexpected state



Avoiding errors

A precondition prohibits misuse of your code
• Adding a precondition weakens the spec

This ducks the problem of errors-will-happen
• Mistakes in your own code
• Misuse of your code by others

Removing a precondition requires specifying more behavior 
• Often a good thing, but there are tradeoffs
• Strengthens the spec
• Example:  specify that an exception is thrown

Recall your experience

Sometimes recalling what you have encountered this quarter 
and how you solved those program failures can help you 
strengthen your perception of these things.

Java’s checked/unchecked distinction

Checked exceptions (style: for special cases)
• Callee:  Must declare in signature (else type error)
• Client:  Must either catch or declare (else type error)

• Even if you can prove it will never happen at run time, the 
type system does not “believe you”

• There is guaranteed to be a dynamically enclosing catch

Unchecked exceptions (style: for never-expected)
• Library:  No need to declare
• Client:  No need to catch
• Subclasses of  

RuntimeException
and Error

Throwable

Runtime
Exception

ErrorException

Checked
exceptions

Why catch exceptions locally?
Failure to catch exceptions usually violates modularity

• Call chain:   A  ® IntegerSet.insert ® IntegerList.insert
• IntegerList.insert throws some exception

• Implementer of IntegerSet.insert knows how list is being used
• Implementer of A may not even know that IntegerList exists

Method on the stack may think that it is handling an exception raised by 
a different call

Better alternative:  catch it and throw again
• “chaining” or “translation”
• Restate in a level of abstraction that the client can understand
• Do this even if the exception is better handled up a level
• Makes it clear to reader of code that it was not an omission



Generics

List<Number> and List<Integer>

interface List<T> {
boolean add(T elt);
T get(int index);

}

So type List<Number> has:
boolean add(Number elt);
Number get(int index);

So type List<Integer> has:
boolean add(Integer elt);
Integer get(int index);

Java subtyping is invariant with respect to generics
• Neither List<Number> nor List<Integer> subtype of other
• Not covariant and not contravariant

Number

Integer

- Subtype needs stronger 
spec than super
- Stronger method spec has:

- weaker precondition
- stronger postcondition

List<Number>

List<Integer>

?
List<Integer>

List<Number>

?

Generic types and subtyping

• List<Integer> and List<Number> are not subtype-related

• Generic types can have subtyping relationships

• Example: If HeftyBag extends Bag, then 
• HeftyBag<Integer> is a subtype of Bag<Integer>
• HeftyBag<Number> is a subtype of Bag<Number>
• HeftyBag<String> is a subtype of Bag<String>
• …

Reasoning about wildcard types
Object o;
Number n;
Integer i;
PositiveInteger p;

List<? extends Integer> lei;

First, which of these is legal?
lei = new ArrayList<Object>();
lei = new ArrayList<Number>();
lei = new ArrayList<Integer>();
lei = new ArrayList<PositiveInteger>();
lei = new ArrayList<NegativeInteger>();

Which of these is legal?
lei.add(o);
lei.add(n);
lei.add(i);
lei.add(p);
lei.add(null);
o = lei.get(0);
n = lei.get(0);
i = lei.get(0);
p = lei.get(0);



Reasoning about wildcard types
Object o;
Number n;
Integer i;
PositiveInteger p;

List<? super Integer> lsi;

First, which of these is legal?
lsi = new ArrayList<Object>;
lsi = new ArrayList<Number>;
lsi = new ArrayList<Integer>;
lsi = new ArrayList<PositiveInteger>;
lsi = new ArrayList<NegativeInteger>;

Which of these is legal?
lsi.add(o);
lsi.add(n);
lsi.add(i);
lsi.add(p);
lsi.add(null);
o = lsi.get(0);
n = lsi.get(0);
i = lsi.get(0);
p = lsi.get(0);

Type erasure
All generic types become type Object once compiled

• Big reason: backward compatibility with ancient byte code
• So, at run-time, all generic instantiations have the same type

List<String>  lst1 = new ArrayList<String>();
List<Integer> lst2 = new ArrayList<Integer>();
lst1.getClass() == lst2.getClass()  // true

Cannot use instanceof to discover a type parameter

Collection<String> cs = new ArrayList<String>();
if (cs instanceof Collection<String>) { // illegal
... 

}

Assertions & Exceptions
• Don’t hide errors

• Be systematic

• Recall your stories



Callbacks

The callback design pattern
Going farther: use a callback to invert the dependency

TimeToStretch creates a Timer, and passes in a reference to itself so 
the Timer can call it back

• This is a callback – a method call from a module to a client that it 
notifies about some condition

The callback inverts a dependency
• Inverted dependency:  TimeToStretch depends on Timer (not 

vice versa)
• Less obvious coding style, but more “natural” dependency

• Side benefit:  Main does not depend on Timer

***Read the slides for observers

Design Patterns
Look at our section slides 

and handouts.



Also for the System 
Development stuffs That’s it


