
Section 8 Work Sheet

Below are the design patterns we have talked about with each
word in chaos. Fix the words and then use them to answer the
questions below:

public class MysteryOtter {

private static final MysteryOtter instance =
 new MysteryOtter();

 //private constructor to avoid client applications to use
constructor
 private MysteryOtter(){}

 public static MysteryOtter getInstance(){
 return instance;
 }
}

Q1: What design pattern is this?

public CuteCow CreateCuteCow(String variety){
 if (variety.equals("white"))
 return new WhiteCuteCow();
 if (variety.equals("shining"))
 return new ShiningCuteCow();
 if (variety.equals("rainbow"))
 return new RainbowCuteCow ();
 return new EmptyCow();
}

Q2: What design pattern is this?

 delBiru MetrFoaohcd yt

 t cjbeOFtorcay Ignentinr drptaAe

 creoarotD oyxPr nonltegiS

public class MysteryFlamingo {

 private static MysteryFlamingo instance;

 private MysteryFlamingo(){}

 public static MysteryFlamingo getInstance(){
 if(instance == null){
 instance = new MysteryFlamingo();
 }
 return instance;
 }
}
Q3: What design pattern is this?

public class MysteryCat {
 private final String cuteness, temper

private static Map<String, MysteryCat> instance =
 new HashMap<String, MysteryCat>;

private MysteryCat(String cuteness, String temper) {
 this.cuteness = cuteness;
 this.temper = temper;
}

public static Cat getInstance(String cuteness,
 String temper){
 String key = cuteness + temper;

 if(!instance.containsKey(key)){
 instance.put(key,
 new MysteryCat(cuteness, temper));
 }
 return instance.get(key);

}

.

}

Q4: What design pattern is this?

interface IceCreamFactory {
 IceCream getIceCream();
}

class VanillaFactory implements IceCreamFactory {

public IceCream getIceCream() {
 return new VanillaIceCream();
}

}

class ChocolateFactory implements IceCreamFactory {

public IceCream getIceCream() {
 return new ChocolateIceCream();
}

}

class StrawberryFactory implements IceCreamFactory {

public IceCream getIceCream() {
 return new StrawberryIceCream();
}

}

Q5: What design pattern is this?

Q6: Try writing a Builder class and a corresponding class

Q7: Which design pattern specifically requires the class be immutable?

Q8: Which design pattern requires that only one object of the class can ever exist at
runtime?

Q9: Which design pattern uses an extra class to store initiation values for an object and
eliminates the need for multiple constructors in the original class?

Q10: Matt made a program that can beautifully and perfectly visualize a list on his phone (in
his dream). Now he wants write a new and better one base on it. Match the following
scenarios to the correct structural design patterns:

Matt wants to make sure it only works for premium users:

Matt wants to make it also able to visualize HashMap and TreeSet on his phone:

Matt wants to make it also able to read content out loudly:

