
Slides by Alex Mariakakis

with material from David Mailhot, 
Hal Perkins, Mike Ernst

Section 8:
Design Patterns

Announcements
• HW8 due tonight 10 pm
• Quiz 7 due tonight 10 pm

• Industry guest speaker tomorrow!
• Topic: Tech Interviews
• Room change: GUG 220 (the large lecture hall next to our 

normal room)

What Is A Design Pattern
• A standard solution to a common programming 

problem

• A technique for making code more flexible

• Shorthand for describing program design and how 
program components are connected



Creational Patterns
• Problem: Constructors in Java are not flexible

o Always return a fresh new object, never reuse one

o Can’t return a subtype of the class they belong to

• Solution: Creational patterns!
o Sharing

• Singleton

• Interning

• Flyweight

o Factories

• Factory method

• Factory object

o Builder

Creational Patterns: Sharing
• The old way: Java constructors always create a 

new object

• Singleton: only one object exists at runtime

• Interning: only one object with a particular 
(abstract) value exists at runtime

• Flyweight: separate intrinsic and extrinsic state, 
represents them separately, and interns the intrinsic 
state

Singleton
• For a class where only one object of that class can 

ever exist

• “Ensure a class has only one instance, and provide 
a global point of access to it.” -- GoF, Design Patterns

• Two possible implementations
o Eager initialization: creates the instance when the class is 

loaded to guarantee availability

o Lazy initialization: only creates the instance once it’s 
needed to avoid unnecessary creation

Singleton
• Eager initialization

public class Bank {
private static Bank INSTANCE = new Bank();

// private constructor
private Bank() { … }

// factory method
public static Bank getInstance() {

return INSTANCE;
}

}

Bank b = new Bank();
Bank b = Bank.getInstance();



Singleton
• Lazy initialization

public class Bank {
private static Bank INSTANCE;

// private constructor
private Bank() { … }

// factory method
public static Bank getInstance() {

if (INSTANCE == null) {
INSTANCE = new Bank();

}
return INSTANCE;

}
}
Bank b = new Bank();
Bank b = Bank.getInstance();

Singleton
• Would you prefer eager or lazy instantiation for an 

HTTPRequest class?
o handles authentication
o definitely needed for any HTTP transaction

• Would you prefer eager or lazy instantiation for a 
Comparator class?
o compares objects
o may or may not be used at runtime

Singleton
public class HttpRequest {

private static class HttpRequestHolder {

public static final HttpRequest INSTANCE = 
new HttpRequest();

}

/* Singleton – Don’t instantiate */

private HttpRequest() { … }

public static HttpRequest getInstance() {

return HttpRequestHolder.INSTANCE;

}

}

Singleton
public class LengthComparator implements Comparator<String> {

private int compare(String s1, String s2) {
return s1.length()-s2.length();

}

/* Singleton – Don’t instantiate */

private LengthComparator() { … }
private static LengthComparator comp = null;

public static LengthComparator getInstance() {
if (comp == null) {

comp = new LengthComparator();
}
return comp;

}
}



Interning
• Similar to Singleton, except instead of just having 

one object per class, there’s one object per 
abstract value of the class

• Saves memory by compacting multiple copies

Interning
public class Point {

private int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() { return x; }
public int getY() { return y; }

@Override
public String toString() {

return “(” + x + “,” + y + “)”;
}

}

Interning
public class Point {

private static Map<String, Point> instances = 

new HashMap<String, Point>();

public static Point getInstance(int x, int y) {

String key = x + “,”, + y;

if (!instances.containsKey(key))

instances.put(key, new Point(x,y));

return instances.get(key);

}

private final int x, y; // immutable

private Point(int x, int y) {…}

}

Requires the class being interned to be immutable. Why?

Interning
• What if Points were represented in polar 

coordinates?

• What further checks are necessary to make 
sure these kinds of Points are interned 
correctly?



Interning
public class Point {

private static Map<String, Point> instances = 

new HashMap<String, Point>();

public static Point getInstance(double r, double theta) {

double normalizedTheta = normalize(theta);

String key = r + “,” + normalizedTheta;

if (!instances.containsKey(key))

instances.put(key, 

new Point(r, normalizedTheta));

return instances.get(key);

}

private final double r, theta; // immutable

private Point(double r, double theta) {...}

}

Why do we need to normalize?

Summary: Sharing Patterns
• The old way: Java constructors always create a 

new object

• Singleton: only one object exists at runtime

• Interning: only one object with a particular 
(abstract) value exists at runtime

• Flyweight: separate intrinsic and extrinsic state, 
represents them separately, and interns the intrinsic 
state

Factories
• Suppose we want a constructor for Set that takes a 

list as a parameter, and produces a TreeSet if the list 
is sorted, and a HashSet otherwise.

• Is this possible?

Factories
• Factories solve the problem that Java constructors 

cannot return a subtype of the class they belong to

• Two options:
o Factory method

• A method that creates and returns objects

• Method defines the interface for creating an object, 
but defers instantiation to subclasses 

o Factory object

• Abstract superclass defines what can be customized

• Concrete subclass does the customization, returns 
appropriate subclass



Factory Method
public static Set produceSet(List list) {

if (isSorted(list)) {

return new TreeSet(list);

} else {

return new HashSet(list);

}

}

Factory Object

interface SetFactory {

Set getSet();

}

class HashSetFactory implements SetFactory {

public Set getSet() {

return new HashSet();

}

}

Builder
• The class has an inner class Builder and is created 

using the Builder instead of the constructor
• The Builder takes optional parameters via setter 

methods (e.g., setX(), setY(), etc.)
• When the client is done supplying parameters, she 

calls build() on the Builder, finalizing the builder 
and returning an instance of the object desired

• Useful when you have many constructor 
parameters
o It is hard to remember which order they should all go in

• Easily allows for optional parameters
o If you have n optional parameters, you need 2^n constructors, 

but only one builder

Builder
public class NutritionFacts {
private final int servingSize, servings; // required
private final int calories, fat, sodium; // optional

// all the contructors!
public NutritionFacts(int srvSize, int servings) {

this(srvSize, servings, 0); }
public NutritionFacts(int srvSize, int servings, int cal) {

this(srvSize, servings, cal, 0); }
public NutritionFacts(int srvSize, int servings, int cal, int fat) {

this(srvSize, servings, cal, fat, 0); }
...
public NutritionFacts(int srvSize, int servings, int calories, 

int fat, int sodium) {
this.servingSize = srvSize;
this.servings = servings;
this.calories = calories;
this.fat = fat;
this.sodium = sodium;

}
}



Builder
public class NutritionFacts {

private final int servingSize, servings, calories, fat, sodium;

// inner builder class
public static class Builder {

private int servingSize, servings; // required 
private int calories = 0, fat = 0, sodium = 0; // optional

public Builder(int servingSize, int servings) {
this.servingSize = servingSize; this.servings = servings; }

public Builder calories(int val) { calories = val; return this; }
public Builder fat(int val) { fat = val; return this; }
public Builder sodium(int val) { sodium = val; return this; }
public NutritionFacts build() { return new NutritionFacts(this); }

}
// only one constructor J
public NutritionFacts(Builder builder) {

this.servingSize = builder.servingSize;
this.servings = builder.servings;
this.calories = builder.calories;
this.fat = builder.fat;
this.sodium = builder.sodium;

}
}

Builder
public class NutritionFacts {

private final int servingSize, servings, calories, fat, sodium;

// inner builder class
public static class Builder {

private int servingSize, servings; // required 
private int calories = 0, fat = 0, sodium = 0; // optional

public Builder(int servingSize, int servings) {
this.servingSize = servingSize; this.servings = servings; }

public Builder calories(int val) { calories = val; return this; }
public Builder fat(int val) { fat = val; return this; }
public Builder sodium(int val) { sodium = val; return this; }
public NutritionFacts build() { return new NutritionFacts(this); }

}
// only one constructor J
public NutritionFacts(Builder builder) {

this.servingSize = builder.servingSize;
this.servings = builder.servings;
this.calories = builder.calories;
this.fat = builder.fat;
this.sodium = builder.sodium;

}
}

why return this
(rather than void) 

from these 
methods?

Structural Patterns
• Problem: Sometimes difficult to realize relationships 

between entities
o Important for code readability

• Solution: Structural patterns!
o We’re just going to talk about wrappers, which translate between 

incompatible interfaces 

Pattern Functionality Interface Purpose

Adapter same different modify the interface

Decorator different same extend behavior

Proxy same* same restrict access

*from client’s perspective

Adapter
• Changes an interface without changing 

functionality
o Rename a method 

o Convert units

• Examples:
o Angles passed in using radians vs. degrees

o Bytes vs. strings



Decorator
• Adds functionality without changing the interface

o Add caching

• Adds to existing methods to do something 
additional while still preserving the previous spec
o Add logging

• Decorators can remove functionality without 
changing the interface
o UnmodifiableList with add() and put()

Proxy
• Wraps the class while maintaining the same 

interface and functionality

• Integer vs. int, Boolean vs. boolean

• Controls access to other objects
o Communication: manage network details when using a remote 

object

o Security: permit access only if proper credentials

o Creation: object might not yet exist because creation is 
expensive

Activity

• What pattern would you use to…

o add a scroll bar to an existing window object in Swing

o We have an existing object that controls a 
communications channel. We would like to provide the 
same interface to clients but transmit and receive 
encrypted data over the existing channel.

Adapter, Builder, Decorator, Factory, Flyweight, Intern, Model-View-
Controller (MVC), Proxy, Singleton, Visitor, Wrapper

Activity

• What pattern would you use to…

o add a scroll bar to an existing window object in Swing

• Decorator

o We have an existing object that controls a 
communications channel. We would like to provide the 
same interface to clients but transmit and receive 
encrypted data over the existing channel.

• Proxy

Adapter, Builder, Decorator, Factory, Flyweight, Intern, Model-View-
Controller (MVC), Proxy, Singleton, Visitor, Wrapper



Announcements
• HW8 due tonight 10 pm
• Quiz 7 due tonight 10 pm

• Guest speaker tomorrow!
• Topic: Tech Interviews!
• Lecture in GUG 220 (the large lecture hall next door to our 

normal room)


