
Slides adapted from Alex Mariakakis
with material from Krysta Yousoufian, Kellen
Donohue, and James Fogarty

Section 7:
Model-View-Controller

and HW 8

Agenda

Announcements
● Homework 7 due tonight Thursday (8/2)

○ Regression testing: Make sure HW5 and HW6 tests pass!
● Homework 8 due next Thursday (8/9)

Overview
● Model-View-Controller
● Homework 8

MVC

✕ The classic design pattern
✕ Used for data-driven user applications
✕ Such apps juggle several tasks:

+ Loading and storing the data – getting it in/out of storage on request
+ Constructing the user interface – what the user sees
+ Interpreting user actions – deciding whether to modify the UI or data

✕ These tasks are largely independent of each
other

✕ Model, view, and controller each get one task

MODEL

talks to data source to
retrieve and store
data

Which database table is
the requested data stored

in?

What SQL query will get
me the data

I need?

VIEW

asks model for data
and presents it in a
user-friendly format

Would this text look better
blue or red? In the bottom

corner
or front and center?

Should these items go in a
dropdown list or radio

buttons?

CONTROLLER

listens for the user to
change data or state
in the UI, notifying the
model or view
accordingly

The user just clicked the
“hide details” button. I

better tell the view.

The user just changed the
event details. I better let the
model know to update the

data.

BENEFITS OF MVC

✕ Organization of code
+ Maintainable, easy to find what you need

✕ Ease of development
+ Build and test components independently

✕ Flexibility
+ Swap out views for different presentations of the same data (ex: calendar daily,

weekly, or monthly view)
+ Swap out models to change data storage without affecting user

MVC FLOW IN THEORY

Model

View

Controller

MVC FLOW

✕ In theory…
+ Pattern of behavior in response to inputs (controller) are independent of visual

geometry (view)
+ Controller contacts view to interpret what input events should mean in the context

of the view

✕ In practice…
+ View and controller are so intertwined that they almost always occur in matched

pairs (ex: command line interface)

+ Many architectures combine the two

MVC FLOW IN PRACTICE

Model
View

Controller

PUSH VS. PULL

Model

View

Controller

PUSH VS. PULL ARCHITECTURE

✕ Push architecture
+ As soon as the model changes, it notifies all of the

views

✕ Pull architecture
+ When a view needs to be updated, it asks the model

for new data

PUSH VS. PULL ARCHITECTURE

✕ Advantages for push
+ Guaranteed to have latest data in case something

goes wrong later on

✕ Advantages for pull
+ Avoid unnecessary updates, not nearly as intensive

on the view

MVC EXAMPLE – TRAFFIC SIGNAL TRAFFIC SIGNAL – MVC

Component Model View Controller
Detect cars waiting to enter
intersection
Traffic lights to direct car traffic
Decide to change the light’s status
Manual override for particular lights
Detect pedestrians waiting to cross
Pedestrian signals to direct
pedestrians
External timer which triggers changes
at set interval

X

X
X

X
X

X

X

TRAFFIC SIGNAL

✕ Model
+ Stores current state of traffic flow

✕ Knows current direction of traffic
✕ Capable of skipping a light cycle

+ Stores whether there are cars and/or pedestrians waiting

✕ View
+ Conveys information to cars and pedestrians in a specific

direction

✕ Controller
+ Aware of model’s current direction
+ Triggers methods to notify model that state should change

TRAFFIC SIGNAL CODE

✕ Model
+ TrafficModel – keeps track of which lights should be on and off

✕ View
+ CarLight – shows relevant state of TrafficModel to cars
+ PedestrianLight – shows relevant state of TrafficModel to pedestrians

✕ Controller
+ PedestrianButton – notifies TrafficModel that there is a pedestrian

waiting
+ CarDetector – notifies TrafficModel that there is a car waiting
+ LightSwitch – enables or disables the light
+ Timer – regulates time in some way, possibly to skip cycles

MVC EXAMPLE – WEB STORE WEB STORE – MVC

Component Model View Controller
Update user’s shopping cart
Display price/details of a product
Storage of product/inventory details
Purchase items in shopping cart
Record of customer transactions
User sign-in
Authenticate user sign-in attempt
Check user credentials

WEB STORE – MVC

Component Model View Controller
Update user’s shopping cart X
Display price/details of a product X
Storage of product/inventory details X
Purchase items in shopping cart X
Record of customer transactions X
User sign-in X
Authenticate user sign-in attempt X
Check user credentials X

To summarize – Don’t do this
View

Model and Controller

HW8 OVERVIEW

✕ Apply your generic graph & Dijkstra’s to campus
map data

✕ Given a list of buildings and walking paths
✕ Produce routes from one building to another on

the walking paths

HW8 DATA FORMAT

✕ List of buildings (abbreviation, name, loc in pixels)
BAG Bagley Hall (East Entrance) 1914.5103,1708.8816
BGR By George 1671.5499,1258.4333

✕ List of paths (endpoint 1, endpoint 2, dist in feet)
1903.7201,1952.4322

1906.1864,1939.0633: 26.583482327919597
1897.9472,1960.0194: 20.597253035175832
1915.7143,1956.5: 26.68364745009741

2337.0143,806.8278
2346.3446,817.55768: 29.685363221542797
2321.6193,788.16714: 49.5110360968527
2316.4876,813.59229: 44.65826043418031

✕ (0,0) is in the upper left

MVC IN HW8

✕ Model stores graph, performs Dijkstra’s

✕ View shows results to users in text format

✕ Controller takes user commands and uses view to
show results

✕ View and Controller will change in HW9, but Model
will stay the same

Homework 8 in Detail

✕ Data files
+ campus_buildings.dat: Possible src/dst for path finding
+ campus_paths.dat: Info for all nodes, edges in your

Graph/Model
+ You do the parsing

Homework 8 in Detail Cont.

✕ Runnable program with following commands:
+ b lists all buildings in form abbreviated name: long name
+ r prompts user for abbrev. names of two buildings then finds a path

between them
+ q quits the program (don’t use System.exit)
+ m prints the menu of commands

✕ Route directions format
+ Path from Building_A to Building_B:

Walk dist feet direction to (x1, y1)
Walk dist feet direction to (x2, y2)
…

+ Total distance: x feet

Homework 8 in Detail Cont.

✕ Solving for the direction
+ Compare coordinates for start, end of edge
+ Pixel (0, 0) is the top-left corner

(this is the tricky part)
+ Helper functions can be very useful

✕ Math.atan2(double y, double x)
✕ Math.toDegrees(double angleRadian)

+ Points that are exactly on the
boundary should default to the
single-letter direction (N, S, E, W)

+ More info on the homework spec

Homework 8 in Detail Cont.

(0, 0)

Start

End

Homework 8 in Detail Cont.

(0, 0)

Start

End

Finding slope
between start/end
will help

