Section 5: HW6 and Interfaces

How is Homework 5 going?

SLIDES ADAPTED FROM ALEX MARIAKAKIS,
WITH MATERIAL FROM KRYSTA YOUSOUFIAN, MIKE ERNST, KELLEN DONOHUE

Agenda

- Reminders
 - HW 5 due tonight (7/19)
 - HW 6 due next Thursday (7/26)
- Breadth-first search (BFS)
- Interfaces
- Parsing Marvel Data

Reminders:

Expensive CheckReps are BAD

(at least when assignments are turned in, but can be useful for finding hard-to-discover problems – so need to be able to control expensive checks)

Debug flags are GOOD

(or enums to indicate depth of debug)

Reminders:

```
public void checkRep() {
  if (debug) {
    // expensive checks
    BigInteger n = countAtomsInUniverse();
    assert n.equals(theCorrectValue);
    ...
}
// cheap checks
int n = countFingersOnRightHand();
assert n <= 5 : "beware the six-fingered man";
    ...
}</pre>
```

Don't forget your CheckReps!

Graphs

Breadth-First Search (BFS)

- Often used for discovering connectivity
- Calculates the shortest path if and only if all edges have same positive or no weight
- Depth-first search (DFS) is commonly mentioned with BFS
- BFS looks "wide", DFS looks "deep"
- DFS can also be used for discovery, but not the shortest path

Breadth-First Search (BFS)

Starting at **A**, which nodes will be visited first in a BFS?

Breadth-First Search (BFS)

Starting at A, which nodes will be visited first in a BFS? B, C, D

Breadth-First Search (BFS)

Starting at **A**, which nodes will be visited second in a BFS?

Breadth-First Search (BFS)

Starting at A, which nodes will be visited second in a BFS? E, F, G

BFS Pseudocode

Breadth-First Search

```
START:

Q: <A>
Goal: Fully explore

Pop: A, Q: <>
Q: <B, C>
Pop: B, Q: <C>
Q: <C>
Pop: C, Q: <C>
Q: <>
DONE
```

Breadth-First Search with Cycle

BFS Pseudocode

Mark the node as visited!

Breadth-First Search

Problem: Find everything reachable from A

Q: <>

Breadth-First Search

Q: <>

Q: <A>

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Breadth-First Search

Shortest Paths with BFS

Shortest Paths with BFS

From Node B

Paul	Cost
<b,a></b,a>	1
	0
<b,a,c></b,a,c>	2
<b,d></b,d>	1
<b,d,e></b,d,e>	2
	 <b,a,c> <b,d></b,d></b,a,c>

Shortest path to D? to E? What are the costs?

Shortest Paths with Weights

Shortest Paths with Weights

Interfaces

Classes, Interfaces, and Types

- The fundamental unit of programming in Java is a class
- Classes can extend other classes and implement interfaces
- Interfaces can extend other interfaces

Classes, Objects, and Java

Everything is an instance of a class

Defines data and methods

Every class extends exactly one other class

- Object if no explicit superclass
- Inherits superclass fields

Every class also defines a type

- Foo defines type Foo
- Foo inherits all inherited types

Interfaces

Pure type declaration

```
public interface Comparable {
    int compareTo(Object other);
}
```

Can contain:

- Method specifications (implicitly public abstract)
- Named constants (implicitly public final static)

Does not contain implementation!

Cannot create instances of interfaces

Implementing Interfaces

- A class can implement one or more interfaces
 class Kitten implements Pettable, Huggable
- The implementing class and its instances have the interface type(s) as well as the class type(s)
- The class must provide or inherit an implementation of all methods defined by the interface(s)
- Not true for abstract classes

Using Interface Types

- An interface defines a type, so we can declare variables and parameters of that type
- A variable with an interface type can refer to an object of any class implementing that type

```
List<String> x = new ArrayList<String>();
void sort(List aList) {...}
```

Guidelines for Interfaces

- Provide interfaces for significant types and abstractions
- Write code using interface types like Map instead of HashMap and TreeMap wherever possible
 - Allows code to work with different implementations later on
- Both interfaces and classes are appropriate in various circumstances

Parsing Marvel Data

- Data is in marvel.tsv
 - Will be pushed with hw6
- Each line is in the form:
 - "character" "book"
 - Ex: "CAPTAIN AMERICA" "N 57"
- Parsing is already implemented for you!

Parsing Marvel Data

- MarvelParser.parseData(String filename, Set<String> characters,
 Map<String, List<String>> books)
- Call parseData() with an empty Set, Map
- parseData() will fill the Set with all comic book characters,
 Map with Characters → List of books they're in

HW 6 Demo