
SECTION 1:
CODE REASONING +

VERSION CONTROL

slides borrowed and adapted from Alex Mariakis and CSE 390a, CSE 331

lecture slides, and Justin Bare and Deric Pang Section 1 slides.

CSE 331 – Summer 2018

OUTLINE

● Introductions

● Code Reasoning
● Forward Reasoning

● Backward Reasoning

● Weaker vs. Stronger statements

● Version control

REASONING ABOUT

CODE

• Two purposes

• Prove our code is correct

• Understand why code is correct

• Forward reasoning: determine what follows from initial

conditions

• Backward reasoning: determine sufficient conditions to

obtain a certain result

TERMINOLOGY

• The program state is the values of all

the (relevant) variables

• An assertion is a logical formula

referring to the program state (e.g.,

contents of variables) at a given point

• An assertion holds for a program state if

the formula is true when those values

are substituted for the variables

TERMINOLOGY

• An assertion before the code is a

precondition – these represent

assumptions about when that code is

used

• An assertion after the code is a

postcondition – these represent what we

want the code to accomplish

FORWARD

REASONING

• Given: Precondition

• Finds: postcondition for given

precondition.

• Aka Finds program state after executing code,

when using given assumptions of program state

before execution.

FORWARD

REASONING

// {x >= 0, y >= 0}

y = 16;

//

x = x + y

//

x = sqrt(x)

//

y = y - x

//

FORWARD

REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

//

x = sqrt(x)

//

y = y - x

//

FORWARD

REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

//

y = y - x

//

FORWARD

REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

// {x >= 4, y = 16}

y = y - x

//

FORWARD

REASONING

// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

// {x >= 4, y = 16}

y = y - x

// {x >= 4, y <= 12}

FORWARD

REASONING

// {true}

if (x>0) {

//

abs = x

//

}

else {

//

abs = -x

//

}

//

//

FORWARD

REASONING

// {true}

if (x>0) {

// {x > 0}

abs = x

//

}

else {

// {x <= 0}

abs = -x

//

}

//

//

FORWARD

REASONING

// {true}

if (x>0) {

// {x > 0}

abs = x

// {x > 0, abs = x}

}

else {

// {x <= 0}

abs = -x

// {x <= 0, abs = -x}

}

//

//

FORWARD

REASONING

// {true}

if (x>0) {

// {x > 0}

abs = x

// {x > 0, abs = x}

}

else {

// {x <= 0}

abs = -x

// {x <= 0, abs = -x}

}

// {x > 0, abs = x OR x <= 0, abs = -x}

//

FORWARD

REASONING

// {true}

if (x>0) {

// {x > 0}

abs = x

// {x > 0, abs = x}

}

else {

// {x <= 0}

abs = -x

// {x <= 0, abs = -x}

}

// {x > 0, abs = x OR x <= 0, abs = -x}

// {abs = |x|}

BACKWARD

REASONING

• Given: Postcondition

• Finds: The weakest precondition for

given postcondition.

BACKWARD

REASONING

• Given: Postcondition

• Finds: The weakest precondition for

given postcondition.

• So, finds most general assumption code

will use to get given postcondition.

BACKWARD

REASONING

//

a = x + b;

//

c = 2b - 4

//

x = a + c

// {x > 0}

BACKWARD

REASONING

//

a = x + b;

//

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

BACKWARD

REASONING

//

a = x + b;

// {a + 2b – 4 > 0}

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

BACKWARD

REASONING

// Backward reasoning is used to determine the

// weakest precondition

// {x + 3b - 4 > 0}

a = x + b;

// {a + 2b – 4 > 0}

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

ASIDE: WEAKEST

PRECONDTION?

• What is weakest precondition?

• Well, precondition is just a statement,

so…Better ask what makes a statement

weaker vs. Stronger?

WEAKER VS.

STRONGER

● Weaker statements = more general

● Stronger statements = more specific aka more

informational

● Stronger statements are more restrictive

○ Ex: x = 16 is stronger than x > 0

○ Ex: “Alex is an awesome TA” is stronger than “Alex is a

TA”

● If A implies B, A is stronger and B is weaker.

● If B implies A, B is stronger and A is weaker.

● If neither, then A and B not comparable.

HOARE TRIPLES

● Hoare triples are just an extension of

logical implication

○ Hoare triple: {P} S {Q}

○ P = precondition

○ S = single line of code

○ Q = postcondition

○ A Hoare triple can be valid or invalid

○ Valid if for all states for which P

holds, executing S always produces

a state for which Q holds

○ Invalid otherwise

HOARE TRIPLE

EXAMPLE #1

• {x != 0} y = x*x; {y > 0}

• Is this valid?

HOARE TRIPLE

EXAMPLE #1

• {x != 0} y = x*x; {y > 0}

• Is this valid?

• Yes

HOARE TRIPLE

EXAMPLE #2

• Is {false} S {Q} a valid Hoare triple?

HOARE TRIPLE

EXAMPLE #2

• Is {false} S {Q} a valid Hoare triple?

• Yes. Because P is false, there are no

conditions when P holds

• Therefore, for all states where P holds (i.e.

none) executing S will produce a state in

which Q holds

HOARE TRIPLE

EXAMPLE #3

• Is {P} S {true} a valid Hoare triple?

HOARE TRIPLE

EXAMPLE #3

• Is {P} S {true} a valid Hoare triple?

• Yes. Any state for which P holds that is

followed by the execution of S will produce

some state

• For any state, true always holds (i.e. true is

true)

VERSION CONTROL

WHAT IS VERSION

CONTROL?

● Also known as source control/revision control

● System for tracking changes to code

○ Software for developing software

● Essential for managing projects

○ See a history of changes

○ Revert back to an older version

○ Merge changes from multiple sources

● We’ll be talking about git/GitLab, but there are

alternatives

○ Subversion, Mercurial, CVS

○ Email, Dropbox, USB sticks (don’t even think of doing this)

VERSION CONTROL

ORGANIZATION

● A repository stores the

master copy of the project

○ Someone creates the repo for a new

project

○ Then nobody touches this copy directly

○ Lives on a server everyone can access

● Each person clones her

own working copy

○ Makes a local copy of the repo

○ You’ll always work off of this copy

○ The version control system syncs the

repo and working copy (with your help)

git

Working
copy

Working
copy

Repository

REPOSITORY
● Can create the repository anywhere

○ Can be on the same computer that you’re going to
work on, which might be ok for a personal project
where you just want rollback protection

● But, usually you want the repository to be robust:

○ On a computer that’s up and running 24/7
■ Everyone always has access to the project

○ On a computer that has a redundant file system
■ No more worries about that hard disk crash

wiping away your project!

● We’ll use CSE GitLab – very similar to GitHub but tied to
CSE accounts and authentication

VERSION CONTROL

COMMON ACTIONS

Most common commands:

● commit / push

○ integrate changes from your working

copy into the repository

● pull

○ integrate changes into your working

copy from the repository

Working
copy

Repository

git

p
u
sh

p
u
ll

VERSION CONTROL

UPDATING FILES

In a bit more detail:

● You make some local changes,

test them, etc., then…

● git add – tell git which changed

files you want to save in repo

● git commit – save all files you’ve

“add”ed in the local repo copy

as an identifiable update

● git push – synchronize with the

GitLab repo by pushing local

committed changes

Working
copy

Repository

git

p
u
sh

p
u
ll

VERSION CONTROL

COMMON ACTIONS (CONT.)

Other common commands:

● add, rm

○ add or delete a file in the working copy

○ just putting a new file in your working

copy does not add it to the repo!

○ still need to commit to make permanent

Working
copy

Repository

git

p
u
sh

p
u
ll

THIS QUARTER

• We distribute starter code by adding it to your

GitLab repo. You retrieve it with git clone the

first time then git pull for later assignments

• You will write code using Eclipse

• You turn in your files by adding them to the

repo, committing your changes, and eventually

pushing accumulated changes to GitLab

• You “turn in” an assignment by tagging your

repo and pushing the tag to GitLab

• You will validate your homework by SSHing

onto attu, cloning your repo, and running an Ant

build file

331 VERSION CONTROL

Repository

create/push

Working copy

co
m
m
it
/p
u
sh

clo
n
e/p

u
ll

add

Working copy for
grading

AVOIDING GIT PROBLEMS
● For the projects in this class, you should never have to

merge

● Except when the staff pushes out a new assignment

● Rules of thumb for working in multiple places:

● Each time before you start working on your assignment, git pull to get
the latest code

● Each time after you are done working for a while, git add/commit/push in
order to update the repository with the latest code

