
Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Section 1
Code Reasoning + Version Control

CSE 331 - Summer 2018

Slides borrowed and adapted from CSE331 18sp Sec01 Slides



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Outline

1 Intro

2 Code Reasoning
Forward Reasoning
Weaker/Stronger Statements
Backward Reasoning
Hoare Triples

3 Version Control



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Outline

1 Intro

2 Code Reasoning
Forward Reasoning
Weaker/Stronger Statements
Backward Reasoning
Hoare Triples

3 Version Control



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Outline

1 Intro

2 Code Reasoning
Forward Reasoning
Weaker/Stronger Statements
Backward Reasoning
Hoare Triples

3 Version Control



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Motivation

Two purposes

Know that our code is correct
Understand why our code is correct

Forward reasoning: determine what follows from initial
conditions

Backward reasoning: determine sufficient conditions to
obtain a result



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Motivation

Two purposes

Know that our code is correct
Understand why our code is correct

Forward reasoning: determine what follows from initial
conditions

Backward reasoning: determine sufficient conditions to
obtain a result



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Motivation

Two purposes

Know that our code is correct
Understand why our code is correct

Forward reasoning: determine what follows from initial
conditions

Backward reasoning: determine sufficient conditions to
obtain a result



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Terminology

Program State

The program state is the values of all (relevant) variables.

Assertion

An assertion is a logical formula referring to the program
state at a given point.

An assertion holds for a program state if the formula is
true when those values are substituted for the variables.

An assertion before the code is a precondition - these
represent assumptions about when that code is used.

An assertion after the code is a postcondition - these
represent what we want the code to accomplish.



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Terminology

Program State

The program state is the values of all (relevant) variables.

Assertion

An assertion is a logical formula referring to the program
state at a given point.

An assertion holds for a program state if the formula is
true when those values are substituted for the variables.

An assertion before the code is a precondition - these
represent assumptions about when that code is used.

An assertion after the code is a postcondition - these
represent what we want the code to accomplish.



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

Given: precondition

Finds: postcondition

Aka find the program state after executing code, when
using given assumptions of program state before execution.



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { x ≥ 0 ∧ y ≥ 0 }
y = 16;

// { x ≥ 0 ∧ y = 16 }

x = x + y;

// { x ≥ 16 ∧ y = 16 }

x = sqrt(x);

// { x ≥ 4 ∧ y = 16 }

y = y - x;

// { x ≥ 4 ∧ y ≤ 12 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { x ≥ 0 ∧ y ≥ 0 }
y = 16;

// { x ≥ 0 ∧ y = 16 }
x = x + y;

// { x ≥ 16 ∧ y = 16 }

x = sqrt(x);

// { x ≥ 4 ∧ y = 16 }

y = y - x;

// { x ≥ 4 ∧ y ≤ 12 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { x ≥ 0 ∧ y ≥ 0 }
y = 16;

// { x ≥ 0 ∧ y = 16 }
x = x + y;

// { x ≥ 16 ∧ y = 16 }
x = sqrt(x);

// { x ≥ 4 ∧ y = 16 }

y = y - x;

// { x ≥ 4 ∧ y ≤ 12 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { x ≥ 0 ∧ y ≥ 0 }
y = 16;

// { x ≥ 0 ∧ y = 16 }
x = x + y;

// { x ≥ 16 ∧ y = 16 }
x = sqrt(x);

// { x ≥ 4 ∧ y = 16 }
y = y - x;

// { x ≥ 4 ∧ y ≤ 12 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { x ≥ 0 ∧ y ≥ 0 }
y = 16;

// { x ≥ 0 ∧ y = 16 }
x = x + y;

// { x ≥ 16 ∧ y = 16 }
x = sqrt(x);

// { x ≥ 4 ∧ y = 16 }
y = y - x;

// { x ≥ 4 ∧ y ≤ 12 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { true }
if (x > 0) {

// { x > 0 }

abs = x;

// { x > 0 ∧ abs = x }

} else {

// { x ≤ 0 }

abs = -x;

// { x ≤ 0 ∧ abs = −x }

}

// { (x > 0 ∧ abs = x) ∨ (x ≤ 0 ∧ abs = −x) }
// { abs = |x| }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { true }
if (x > 0) {

// { x > 0 }
abs = x;

// { x > 0 ∧ abs = x }

} else {
// { x ≤ 0 }
abs = -x;

// { x ≤ 0 ∧ abs = −x }

}

// { (x > 0 ∧ abs = x) ∨ (x ≤ 0 ∧ abs = −x) }
// { abs = |x| }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { true }
if (x > 0) {

// { x > 0 }
abs = x;

// { x > 0 ∧ abs = x }
} else {

// { x ≤ 0 }
abs = -x;

// { x ≤ 0 ∧ abs = −x }
}

// { (x > 0 ∧ abs = x) ∨ (x ≤ 0 ∧ abs = −x) }
// { abs = |x| }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { true }
if (x > 0) {

// { x > 0 }
abs = x;

// { x > 0 ∧ abs = x }
} else {

// { x ≤ 0 }
abs = -x;

// { x ≤ 0 ∧ abs = −x }
}
// { (x > 0 ∧ abs = x) ∨ (x ≤ 0 ∧ abs = −x) }

// { abs = |x| }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Forward Reasoning

// { true }
if (x > 0) {

// { x > 0 }
abs = x;

// { x > 0 ∧ abs = x }
} else {

// { x ≤ 0 }
abs = -x;

// { x ≤ 0 ∧ abs = −x }
}
// { (x > 0 ∧ abs = x) ∨ (x ≤ 0 ∧ abs = −x) }
// { abs = |x| }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

Given: postcondition

Finds: weakest precondition

What is weakest precondition?

Well, precondition is just a statement...

What makes a statement weaker or stronger?



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

Given: postcondition

Finds: weakest precondition

What is weakest precondition?

Well, precondition is just a statement...

What makes a statement weaker or stronger?



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

Given: postcondition

Finds: weakest precondition

What is weakest precondition?

Well, precondition is just a statement...

What makes a statement weaker or stronger?



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Weaker/Stronger

Weaker statements = more general

Stronger statements = more specific / restrictive /
informational

If A → B, A is stronger and B is weaker

If B → A, B is stronger and A is weaker

If neither, then A and B not comparable.

Example

x = 16 is stronger than x > 0

“Frank is an awesome TA” is stronger than “Frank is a
TA”



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Weaker/Stronger

Weaker statements = more general

Stronger statements = more specific / restrictive /
informational

If A → B, A is stronger and B is weaker

If B → A, B is stronger and A is weaker

If neither, then A and B not comparable.

Example

x = 16 is stronger than x > 0

“Frank is an awesome TA” is stronger than “Frank is a
TA”



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

Given: postcondition

Finds: weakest precondition

Aka finds most general assumption code will use to get
given postcondition.



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

Given: postcondition

Finds: weakest precondition

Aka finds most general assumption code will use to get
given postcondition.



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

// Backward reasoning is used to determine the weakest precondition

// { x+ 3b− 4 > 0 }

a = x + b;

// { a+ 2b− 4 > 0 }

c = 2b - 4;

// { a+ c > 0 }

x = a + c;

// { x > 0 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

// Backward reasoning is used to determine the weakest precondition

// { x+ 3b− 4 > 0 }

a = x + b;

// { a+ 2b− 4 > 0 }

c = 2b - 4;

// { a+ c > 0 }
x = a + c;

// { x > 0 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

// Backward reasoning is used to determine the weakest precondition

// { x+ 3b− 4 > 0 }

a = x + b;

// { a+ 2b− 4 > 0 }
c = 2b - 4;

// { a+ c > 0 }
x = a + c;

// { x > 0 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

// Backward reasoning is used to determine the weakest precondition

// { x+ 3b− 4 > 0 }
a = x + b;

// { a+ 2b− 4 > 0 }
c = 2b - 4;

// { a+ c > 0 }
x = a + c;

// { x > 0 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Backward Reasoning

// Backward reasoning is used to determine the weakest precondition

// { x+ 3b− 4 > 0 }
a = x + b;

// { a+ 2b− 4 > 0 }
c = 2b - 4;

// { a+ c > 0 }
x = a + c;

// { x > 0 }



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Hoare Triples

Hoare triples are just an extension of logical implication

{P} S {Q}
P = precondition
S = code
Q = postcondition

A Hoare triple can be valid or invalid

Valid if for all states for which P holds, executing S always
produces a state for which Q holds
Invalid otherwise



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Hoare Triples

{ x 6= 0 } y = x*x; { y > 0 }
{ false } S { Q }

When P is false, there is no condition
when P holds
For all states where P holds (i.e. none)
executing S will produce a state in which
Q holds

{ P } S { true }

Any state for which P holds that is
followed by the execution of S will
produce some state
For any state, true always holds (i.e. true
is true)

valid

valid

valid



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Hoare Triples

{ x 6= 0 } y = x*x; { y > 0 }
{ false } S { Q }

When P is false, there is no condition
when P holds
For all states where P holds (i.e. none)
executing S will produce a state in which
Q holds

{ P } S { true }

Any state for which P holds that is
followed by the execution of S will
produce some state
For any state, true always holds (i.e. true
is true)

valid

valid

valid



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Hoare Triples

{ x 6= 0 } y = x*x; { y > 0 }
{ false } S { Q }

When P is false, there is no condition
when P holds
For all states where P holds (i.e. none)
executing S will produce a state in which
Q holds

{ P } S { true }

Any state for which P holds that is
followed by the execution of S will
produce some state
For any state, true always holds (i.e. true
is true)

valid

valid

valid



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Hoare Triples

{ x 6= 0 } y = x*x; { y > 0 }
{ false } S { Q }

When P is false, there is no condition
when P holds
For all states where P holds (i.e. none)
executing S will produce a state in which
Q holds

{ P } S { true }
Any state for which P holds that is
followed by the execution of S will
produce some state
For any state, true always holds (i.e. true
is true)

valid

valid

valid



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

Outline

1 Intro

2 Code Reasoning
Forward Reasoning
Weaker/Stronger Statements
Backward Reasoning
Hoare Triples

3 Version Control



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

What is Version Control?

Aka source control / revision control

Tracking changes to code

See a history of changes
Revert back to an older version
Merge changes from multiple sources

We will use git/Gitlab, but others exist

Gitlab is very similar to GitHub but can be tied to CSE
accounts and authentication
Subversion, Mercurial, CVS
Email, Dropbox, USB sticks (don’t even think of doing
this)

git can be used in many ways, and we are using it in a centralized

way

The repo on the CSE Gitlab Server is the master repo.



Sec01

Intro

Code
Reasoning

Forward Reasoning

Weaker/Stronger
Statements

Backward Reasoning

Hoare Triples

Version
Control

git for This Course

1 TAs create a repository for each student on the CSE Gitlab server.

2 You clone the repo from the server to get a local copy on your
computer.

3 TAs push starter code for each assignment to your repo on the server.

4 You pull the starter code from the server to your local copy of your
repo.

5 You modify (write code) files in your local repo.

6 You add each file you modified and commit those changes to your
local repo.

7 You push the changes to your local repo to the server repo.

8 You create a tag pointing to your final version and push the tag.

9 TAs pull the version of your code referred by your tag and grade it.


	Intro
	Code Reasoning
	Forward Reasoning
	Weaker/Stronger Statements
	Backward Reasoning
	Hoare Triples

	Version Control

