
Leah Perlmutter / Summer 2018

CSE 331
Software Design and Implementation

Lecture 22
System Development

Announcements

Announcements
• Last Friday’s Guest Speaker (Kendra Yourtee)

– Sign thank-you card
– Take survey: https://tinyurl.com/yay8m24s

• Campus Maps Demos Wednesday!
– You don’t have to be finished with HW9
– The first 10 volunteers will receive a special reward
– Sign up here: https://tinyurl.com/yay092374

• Course evaluations – Please give feedback on this course!
– You should have received an email from “UW Course

Evaluations” with the link
– https://uw.iasystem.org/survey/195871

https://tinyurl.com/yay8m24s
https://tinyurl.com/yay092374
https://uw.iasystem.org/survey/195871

Announcements
• Quiz 8 due Thursday 8/16

• Homework 9 due Thursday 8/16

• Final Exam Friday in class (60 minutes)
– Covers all material after the midterm
– Final exam review: during section Thursday 8/16

System
Development

Context

CSE331 is almost over…

• Focus on software design, specification, testing, and
implementation
– Absolutely necessary stuff for any nontrivial project

• But not sufficient for the real world: At least 2 key missing pieces
– Techniques for larger systems and development teams

• This lecture; yes fair game for final exam
• Major focus of CSE403 (Software Engineering)

– Usability: interfaces engineered for humans
• Another lecture: didn’t fit this quarter
• Major focus of CSE440 (HCI)

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order

Software
Architecture

Architecture

Software architecture refers to the high-level structure of a software
system

– A principled approach to partitioning the modules and
controlling dependencies and data flow among the modules

Common architectures have well-known names and well-known
advantages/disadvantages

A good architecture ensures:
– Work can proceed in parallel
– Progress can be closely monitored
– The parts combine to provide the desired functionality

Example architectures
Pipe-and-filter (think: iterators)

Blackboard Layered
(think: callbacks) (think: levels of abstraction)

Filter Filter Filter SinkSource
pipe pipe pipe pipe

Message
store

Component

Component Component

Component

Component

A good architecture allows:

• Scaling to support large numbers of ______
• Adding and changing features
• Integration of acquired components
• Communication with other software
• Easy customization

– Ideally with no programming
– Turning users into programmers is good

• Software to be embedded within a larger system
• Recovery from wrong decisions

– About technology
– About markets

System architecture

• Have one!
• Subject it to serious scrutiny

– At relatively high level of abstraction
– Basically lays down communication protocols

• Strive for simplicity
– Flat is good
– Know when to say no
– A good architecture rules things out

• Reusable components should be a design goal
– Software is capital
– This will not happen by accident
– May compete with other goals the organization behind the

project has (but less so in the global view and long-term)

Temptations to avoid

• Avoid featuritis
– Costs under-estimated

• Effects of scale discounted
– Benefits over-estimated

• A Swiss Army knife is rarely the right tool
• Avoid digressions

– Infrastructure
– Premature tuning

• Often addresses the wrong problem
• Avoid quantum leaps

– Occasionally, great leaps forward
– More often, into the abyss

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order

Tools

Build tools

• Building software requires many tools:
– Java compiler, C/C++ compiler, GUI builder, Device driver

build tool, InstallShield, Web server, Database, scripting
language for build automation, parser generator, test
generator, test harness

• Reproducibility is essential
• System may run on multiple devices

– Each has its own build tools
• Everyone needs to have the same toolset!

– Wrong or missing tool can drastically reduce productivity
• Hard to switch tools in mid-project

If you’re doing work the computer could do for you,
then you’re probably doing it wrong

Code
Review

Version control (source code control)

• A version control system lets you:
– Collect work (code, documents) from all team members
– Synchronize team members to current source
– Have multiple teams make progress in parallel
– Manage multiple versions, releases of the software
– Identify regressions more easily

• Example tools:
– Subversion (SVN), Mercurial (Hg), Git

• Policies are even more important
– When to check in, when to update, when to branch and

merge, how builds are done
– Policies need to change to match the state of the project

• Always diff before you commit

Issue tracking

• An issue tracking system supports:
– The team’s to-do list

• who will do each work item and when
– Tracking and fixing bugs and regressions
– Communicating among team members

• Essential for any non-small or non-short project

• Example tools:
– cloud hosted: Google Developers, GitLab, GitHub, Bitbucket,

Jira, Trello
– host your own: Bugzilla, Flyspray, Trac

Issue tracking

Need to configure the bug tracking system to match the project
– Many configurations can be too complex to be useful

A good process is key to managing bugs
– An explicit policy that everyone knows, follows, and believes in

Bug
found

Prioritize Assign Replicate Examine

Discover Fix Verify Close

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order

Scheduling
and Scoping

Scheduling and Scoping
“More software projects have gone awry for lack of calendar time
than for all other causes combined.”

-- Fred Brooks, The Mythical Man-Month

Three central questions of the software business
3. When will it be done?
2. How much will it cost?
1. When will it be done?

• Estimates are almost always too optimistic
• Estimates reflect what one wishes to be true
• We confuse effort with progress
• Progress is poorly monitored
• Slippage is not aggressively treated

Some wry wisdom...

A project expands to fill up the time you have available for it.

Hofstadter’s Law: It always takes longer than you expect, even
when you take into account Hofstadter's Law.

SMART goals

The name is cheesy, but it’s a valuable concept
Specific
Measurable*****
Achievable
Relevant
Timebound*****

• Work on HW9
– when? how much work?

• Work on HW9 by 5pm on Wednesday 8/15
– how much work?

• Get HW9 mostly done by 5pm on Wednesday 8/15
– what does “mostly done” mean?

• Get HW9 completely done by 5pm on Thursday 8/16

Milestones in a Software Project

• Milestones are critical keep the project on track
– Policies may change at major milestones
– Check-in rules, build process, etc.

• Some typical milestones (names)
– Design complete
– Interfaces complete / feature complete
– Code complete / code freeze
– Alpha release
– Beta release
– Release candidate (RC)
– FCS (First Commercial Shipment) release

Effort is not the same as progress
Effort is the amount of time spent earnestly working on the project

– Can be equated with number of hours
– Cost of the project (salary paid to workers) is proportional to

effort

Progress involves reaching milestones
– Hard to track, because it is hard to make good milestones

• Often lots of effort leads to little progress
– This is normal! Much experience gained!

• but for some reason, managers don’t seem to like it
– (see cost)

– Be honest with yourself.
• You can’t just “catch up before anyone notices”

– Need to adjust the schedule

When you know you will miss a milestone...

Change the scope and/or the due date.

• Option A: Later deadline, same amount of work
• Option B: Same deadline, less work
• Option C: Same deadline, same amount of work
• Option D: Later deadline, and more work

• Which of these will set you up for success?
– only A and B.

• Options C and D are implemented surprisingly frequently, often
with painful results.

Dealing with slippage

• People must be held accountable
– Slippage is not inevitable
– Software should be on time, on budget, and on function

• Four options
– Add people – startup cost (“mythical man-month”)
– Buy components – hard in mid-stream
– Change deliverables – customer must approve
– Change schedule – customer must approve

• Take no small slips
– One big adjustment is better than three small ones

It’s a learning process!

• Scoping and time management, like other skills, can be learned!
• Delivering stuff late just means you have not yet learned good

time managment (growth potential!)
– might have consequences, but not the end of the world

• Make sure to change your process for the next time

• Retrospective – discussing/analyzing past work in order to learn
how to improve your (team’s) process

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling

• Implementation and testing order

Implementation
and Testing

Order

How to code and test your design

• You have a design and architecture
– Need to code and test the system

• Key question, what to do when?

• Suppose the system has this module dependency diagram
– In what order should

you address the pieces? A

B

F

C D

G

E

Bottom-up

• Implement/test children first
– For example: G, E, B, F, C, D, A

• First, test G stand-alone (also E)
– Generate test data
– Construct test driver to run low-level components

• Next, implement/test B, F, C, D
• No longer unit testing: use lower-level modules

– A test of module M tests:
• whether M works, and
• whether modules M calls behave as expected

– When a failure occurs, many possible sources of defect
– Integration testing is hard, irrespective of order

A

B

F

C D

G

E

Top-down

• Implement/test parents (clients) first
– Here, we start with A

• To run A, build stubs to simulate B, C, and D
– Also known as mocking.

• Tools: Mockito, PowerMock, ...

• Next, choose a successor module, e.g., B
– Build a stub for E
– Drive B using A

• Suppose C is next
– Can we reuse the stub for E?

A

B

F

C D

G

E

Implementing a stub or mock object
• Query a person at a console

– Same drawbacks as using a person as a driver

• Print a message describing the call
– Name of procedure and arguments
– Fine if calling program does not need result

• More common than you might think

• Provide “canned” or generated sequence of results
– Often sufficient
– Generate using criteria used to generate data for unit test
– May need different stubs for different callers

• Provide a primitive (inefficient & incomplete) implementation
– Best choice, if not too much work
– Look-up table often works
– Sometimes called “mock objects” (ignoring technical definitions?)

Comparing top-down and bottom-up

• Criteria
– What kinds of errors are caught when?
– How much integration is done at a time?
– Distribution of testing time?
– Amount of work?
– What is working when (during the process)?

• Neither dominates
– Useful to understand advantages/disadvantages of each
– Helps you to design an appropriate mixed strategy

Catching design errors

• Top-down tests global decisions first
– E.g., what system does
– Most devastating place to be wrong
– Good to find early

• Bottom-up uncovers efficiency problems earlier
– Constraints often propagate downward
– You may discover they can’t be met at lower levels

Amount of work

• Always need test harness

• Top-down
– Build stubs but not drivers

• Bottom-up
– Build drivers but not stubs

• Stubs are usually more work than drivers
– Particularly true for data abstractions

• On average, top-down requires more non-deliverable code
– Not necessarily bad

What components work, when?

• Bottom-up involves lots of invisible activity
– 90% of code written and debugged
– Yet little that can be demonstrated

• Top-down depth-first
– Earlier completion of useful partial versions

Regression testing

• Ensure that things that used to work still do
– Including performance
– Whenever a change is made

• Knowing exactly when a bug is introduced is important
– Keep old test results
– Keep versions of code that match those results
– Storage is cheap

Perspective…

• Software project management is challenging
– There are still major disasters – projects that go

way over budget, take much longer than planned,
or are abandoned after large investments

– We’re better at it than we used to be, but not there
yet (is “software engineering” real “engineering”?)

• Project management is a mix of hard and soft skills

• We’ve only skimmed the surface
– Next: CSE 403, internship/real world, ???

Announcements

Announcements
• Last Friday’s Guest Speaker (Kendra Yourtee)

– Sign thank-you card
– Take survey: https://tinyurl.com/yay8m24s

• Campus Maps Demos Wednesday!
– You don’t have to be finished with HW9
– The first 10 volunteers will receive a special reward
– Sign up here: https://tinyurl.com/yay092374

• Course evaluations – Please give feedback on this course!
– You should have received an email from “UW Course

Evaluations” with the link
– https://uw.iasystem.org/survey/195871

https://tinyurl.com/yay8m24s
https://tinyurl.com/yay092374
https://uw.iasystem.org/survey/195871

Announcements
• Quiz 8 due Thursday 8/16

• Homework 9 due Thursday 8/16

• Final Exam Friday in class (60 minutes)
– Covers all material after the midterm
– Final exam review: during section Thursday 8/16

Bonus Material!
Download the slides in .pptx format to
see material on “hidden slides” not
presented in this quarter’s lecture.
(Hidden slides not visible in PDF.)

