CSE 331

Software Design and Implementation

Lecture 22
System Development

Leah Perlmutter / Summer 2018

Announcements

Announcements

Last Friday’s Guest Speaker (Kendra Yourtee)
— Sign thank-you card
— Take survey: https://tinyurl.com/yay8m24s

Campus Maps Demos Wednesday!
— You don’t have to be finished with HW9
— The first 10 volunteers will receive a special reward
— Sign up here: https://tinyurl.com/yay092374

Course evaluations — Please give feedback on this course!

— You should have received an email from “UW Course
Evaluations” with the link

— https://uw.iasystem.org/survey/195871

https://tinyurl.com/yay8m24s
https://tinyurl.com/yay092374
https://uw.iasystem.org/survey/195871

Announcements

Quiz 8 due Thursday 8/16
Homework 9 due Thursday 8/16
Final Exam Friday in class (60 minutes)

— Covers all material after the midterm
— Final exam review: during section Thursday 8/16

System
Development

Context

CSE331 is almost over...

Focus on software design, specification, testing, and
implementation

— Absolutely necessary stuff for any nontrivial project

But not sufficient for the real world: At least 2 key missing pieces
— Techniques for larger systems and development teams
 This lecture; yes fair game for final exam
- Major focus of CSE403 (Software Engineering)
— Usability: interfaces engineered for humans
- Another lecture: didn’t fit this quarter
« Major focus of CSE440 (HCI)

Outline

Software architecture
Tools

— For build management
— For version control

— For bug tracking
Scheduling

Implementation and testing order

Software
Architecture

Architecture

Software architecture refers to the high-level structure of a software
system

— A principled approach to partitioning the modules and
controlling dependencies and data flow among the modules

Common architectures have well-known names and well-known
advantages/disadvantages

A good architecture ensures:
— Work can proceed in parallel
— Progress can be closely monitored
— The parts combine to provide the desired functionality

Example architectures

Pipe-and-filter (think: iterators)

Source PP IR _Pipc [N Filter ALY

Blackboard
(think: callbacks)

Message
store

Component

Layered

(think: levels of abstraction)

PB .NET Smart Client application

-

Mobilink support PB .NET Windows Form application
L Il (ntelligent updater
J <« Language Interop —J E

FIGURE 1 | ARCHITECTURAL DIAGRAM OF A POWERBUILDER
SMART CLIENT APPLICATION

A good architecture allows:

Scaling to support large numbers of

Adding and changing features

Integration of acquired components
Communication with other software

Easy customization

— ldeally with no programming

— Turning users into programmers is good
Software to be embedded within a larger system
Recovery from wrong decisions

— About technology

— About markets

System architecture

Have one!
Subject it to serious scrutiny

— At relatively high level of abstraction

— Basically lays down communication protocols
Strive for simplicity

— Flat is good

— Know when to say no

— A good architecture rules things out
Reusable components should be a design goal

— Software is capital

— This will not happen by accident

— May compete with other goals the organization behind the
project has (but less so in the global view and long-term)

Temptations to avoid

Avoid featuritis
— Costs under-estimated
- Effects of scale discounted
— Benefits over-estimated
- A Swiss Army knife is rarely the right tool
Avoid digressions
— Infrastructure
— Premature tuning
- Often addresses the wrong problem
Avoid quantum leaps
— Occasionally, great leaps forward
— More often, into the abyss

Outline

Software architecture
Tools

— For build management
— For version control

— For bug tracking
Scheduling

Implementation and testing order

Tools

Build tools

Building software requires many tools:

— Java compiler, C/C++ compiler, GUI builder, Device driver
build tool, InstallShield, Web server, Database, scripting
language for build automation, parser generator, test
generator, test harness

Reproducibility is essential
System may run on multiple devices
— Each has its own build tools
Everyone needs to have the same toolset!
— Wrong or missing tool can drastically reduce productivity
Hard to switch tools in mid-project

If you’re doing work the computer could do for you,
then you’re probably doing it wrong

Projects v Groups More v

p Showing 7 changed files ~
TIWVII OULAUIl ANV & Mo v

from world_object import WorldObject

&
| from components import Round
from pa_perception import Gesture
@ from log_util import *
| O g Leah Perlmutter @Irperimu Master
, Vi€® commented about a minute ago
|
| n avoid importing *
| O
o
import sys
|] sys.path.append(’'..")
(o) from language_analyzer import SimpleAnalyzer
from reference_resolver import ReferenceResolver
| class Script(object):
| def __init_ (self):
Leah Perlmutter @Irperimu Master
V1€ commented less than a minute ago
what is this used for?
filename =
'/home/Llrperlmu/research_ws/src/pr2_assist/trp_main/config/script.json’
fp = open(filename)
script_json = json.load(fp)
json_commands = script_json['scripted_tasks']
self.commands = {}
» ’

for cmd in json_commands:

Version control (source code control)

A version control system lets you:
— Collect work (code, documents) from all team members
— Synchronize team members to current source
— Have multiple teams make progress in parallel
— Manage multiple versions, releases of the software
— ldentify regressions more easily
Example tools:
— Subversion (SVN), Mercurial (Hg), Git
Policies are even more important

— When to check in, when to update, when to branch and
merge, how builds are done

— Policies need to change to match the state of the project
Always diff before you commit

Issue tracking

An issue tracking system supports:
— The team’s to-do list
« who will do each work item and when
— Tracking and fixing bugs and regressions
— Communicating among team members

Essential for any non-small or non-short project

Example tools:

— cloud hosted: Google Developers, GitLab, GitHub, Bitbucket,
Jira, Trello

— host your own: Bugzilla, Flyspray, Trac

Issue tracking

Need to configure the bug tracking system to match the project
— Many configurations can be too complex to be useful
A good process is key to managing bugs
— An explicit policy that everyone knows, follows, and believes in

Prioritize Exami&

Outline

Software architecture
Tools

— For build management
— For version control

— For bug tracking
Scheduling

Implementation and testing order

Scheduling
and Scoping

Scheduling and Scoping

“More software projects have gone awry for lack of calendar time
than for all other causes combined.”

-- Fred Brooks, The Mythical Man-Month

Three central questions of the software business

3. When will it be done?
2. How much will it cost?
1. When will it be done?

Estimates are almost always too optimistic
Estimates reflect what one wishes to be true
We confuse effort with progress

Progress is poorly monitored

Slippage is not aggressively treated

Some wry wisdom...

A project expands to fill up the time you have available for it.

Hofstadter’s Law: It always takes longer than you expect, even
when you take into account Hofstadter's Law.

SMART goals

The name is cheesy, but it’s a valuable concept
Specific

Measurable*****

Achievable

Relevant

Timebound™****

Work on HW9
— when? how much work?

Work on HW9 by 5pm on Wednesday 8/15
— how much work?

Get HW9 mostly done by 5pm on Wednesday 8/15
— what does “mostly done” mean?

Get HW9 completely done by 5pm on Thursday 8/16

Milestones in a Software Project

Milestones are critical keep the project on track
— Policies may change at major milestones
— Check-in rules, build process, etc.

Some typical milestones (names)

— Design complete

— Interfaces complete / feature complete

— Code complete / code freeze

— Alpha release

— Beta release

— Release candidate (RC)

— FCS (First Commercial Shipment) release

Effort is not the same as progress

Effort is the amount of time spent earnestly working on the project
— Can be equated with number of hours

— Cf?st of the project (salary paid to workers) is proportional to
effort

Progress involves reaching milestones
— Hard to track, because it is hard to make good milestones

Often lots of effort leads to little progress
— This is normal! Much experience gained!

* but for some reason, managers don’t seem to like it
— (see cost)

— Be honest with yourself.
* You can’t just “catch up before anyone notices”
— Need to adjust the schedule

When you know you will miss a milestone...

Change the scope and/or the due date.

Option A: Later deadline, same amount of work
Option B: Same deadline, less work

Option C: Same deadline, same amount of work
Option D: Later deadline, and more work

Which of these will set you up for success?
— only A and B.

Options C and D are implemented surprisingly frequently, often
with painful results.

Dealing with slippage

People must be held accountable
— Slippage is not inevitable
— Software should be on time, on budget, and on function

Four options

— Add people — startup cost (“mythical man-month’”)
— Buy components — hard in mid-stream

— Change deliverables — customer must approve

— Change schedule — customer must approve

Take no small slips
— One big adjustment is better than three small ones

It’s a learning process!

Scoping and time management, like other skills, can be learned!

Delivering stuff late just means you have not yet learned good
time managment (growth potential!)

— might have consequences, but not the end of the world
Make sure to change your process for the next time

Retrospective — discussing/analyzing past work in order to learn
how to improve your (team’s) process

Outline

Software architecture
Tools

— For build management
— For version control

— For bug tracking
Scheduling

Implementation and testing order

Implementation

and lesting
Order

How to code and test your design

You have a design and architecture
— Need to code and test the system

Key question, what to do when?

Suppose the system has this module dependency diagram

— In what order should
you address the pieces? A

Bottom-up

* Implement/test children first T

— Forexample: G, E,B,F,C,D, A
« First, test G stand-alone (also E)
— Generate test data \E/\F
— Construct test driver to run low-level components
- Next, implement/test B, F, C, D
« No longer unit testing: use lower-level modules
— A test of module M tests:
- whether M works, and
- whether modules M calls behave as expected
— When a failure occurs, many possible sources of defect
— Integration testing is hard, irrespective of order

Top-down

Implement/test parents (clients) first
— Here, we start with A

To run A, build stubs to simulate B, C, and D
— Also known as mocking.
* Tools: Mockito, PowerMock, ...

Next, choose a successor module, e.g., B
— Build a stub for E
— Drive B using A

Suppose C is next
— Can we reuse the stub for E?

Implementing a stub or mock object

Query a person at a console
— Same drawbacks as using a person as a driver

Print a message describing the call

— Name of procedure and arguments

— Fine if calling program does not need result
« More common than you might think

Provide “canned” or generated sequence of results
— Often sufficient
— Generate using criteria used to generate data for unit test
— May need different stubs for different callers

Provide a primitive (inefficient & incomplete) implementation
— Best choice, if not too much work
— Look-up table often works
— Sometimes called “mock objects” (ignoring technical definitions?)

Comparing top-down and bottom-up

Criteria
— What kinds of errors are caught when?
— How much integration is done at a time?
— Distribution of testing time?
— Amount of work?
— What is working when (during the process)?

Neither dominates
— Useful to understand advantages/disadvantages of each
— Helps you to design an appropriate mixed strategy

Catching design errors

Top-down tests global decisions first

— E.g., what system does

— Most devastating place to be wrong
— Good to find early

Bottom-up uncovers efficiency problems earlier
— Constraints often propagate downward
— You may discover they can’t be met at lower levels

Amount of work

Always need test harness

Top-down
— Build stubs but not drivers

Bottom-up
— Build drivers but not stubs

Stubs are usually more work than drivers
— Particularly true for data abstractions

On average, top-down requires more non-deliverable code
— Not necessarily bad

What components work, when?

Bottom-up involves lots of invisible activity
— 90% of code written and debugged
— Yet little that can be demonstrated

Top-down depth-first
— Earlier completion of useful partial versions

Regression testing

Ensure that things that used to work still do
— Including performance
— Whenever a change is made

Knowing exactly when a bug is introduced is important
— Keep old test results

— Keep versions of code that match those results

— Storage is cheap

Perspective...

- Software project management is challenging

— There are still major disasters — projects that go
way over budget, take much longer than planned,
or are abandoned after large investments

— We’'re better at it than we used to be, but not there
yet (is “software engineering” real “engineering”?)

Project management is a mix of hard and soft skills

- We've only skimmed the surface
— Next: CSE 4083, internship/real world, ?7??

Announcements

Announcements

Last Friday’s Guest Speaker (Kendra Yourtee)
— Sign thank-you card
— Take survey: https://tinyurl.com/yay8m24s

Campus Maps Demos Wednesday!
— You don’t have to be finished with HW9
— The first 10 volunteers will receive a special reward
— Sign up here: https://tinyurl.com/yay092374

Course evaluations — Please give feedback on this course!

— You should have received an email from “UW Course
Evaluations” with the link

— https://uw.iasystem.org/survey/195871

https://tinyurl.com/yay8m24s
https://tinyurl.com/yay092374
https://uw.iasystem.org/survey/195871

Announcements

Quiz 8 due Thursday 8/16
Homework 9 due Thursday 8/16
Final Exam Friday in class (60 minutes)

— Covers all material after the midterm
— Final exam review: during section Thursday 8/16

Bonus Material!

Download the slides in .pptx format to
see material on “hidden slides” not
presented in this quarter’s lecture.
(Hidden slides not visible in PDF.)

