
Leah Perlmutter / Summer 2018

CSE 331
Software Design and Implementation

Lecture 16
Callbacks and Observers

Announcements

Announcements
• Quiz 6 due Thursday 8/2
• Homework 7 due Thursday 8/2

Callbacks

The limits of scaling

What prevents us from building huge,
intricate structures that work perfectly and
indefinitely?

– Not just friction
– Not just gravity
– Not just wear-and-tear

… it’s the difficulty of managing complexity!

So we split designs into sensible parts and
reduce interaction among the parts

– More cohesion within parts
– Less coupling across parts

Concept Overview
Coupling – dependency between different parts
• Use coupling only where necessary
• Decouple needlessly coupled components
Reusability
• Uncoupled components are more reusable
Modularity
• The resulting design is modular because each component does

its own functionality (no more, no less)
Callbacks
• The concept of passing in a method that will be called later
• (to be illustrated soon)

Today we will apply the concept of callbacks to decouple needlessly
coupled components!

Design exercise #1

Write a typing-break reminder program
Offer the hard-working user occasional reminders of the perils of
Repetitive Strain Injury, and encourage the user to take a break
from typing.

Design exercise #1

Write a typing-break reminder program
Offer the hard-working user occasional reminders of the perils of
Repetitive Strain Injury, and encourage the user to take a break
from typing.

Naive design:
– Make a method to display messages and offer exercises
– Make a loop to call that method from time to time

(Let's ignore multithreaded solutions for this discussion)

TimeToStretch suggests exercises

public class TimeToStretch {

public void run() {

System.out.println("Stop typing!");

suggestExercise();

}

public void suggestExercise() {

…

}

}

Timer calls run() periodically

public class Timer {
private TimeToStretch tts = new TimeToStretch();

public void start() {

while (true) {
...
if (enoughTimeHasPassed) {

tts.run();
}

...
}

}

}

Main class puts it together

class Main {
public static void main(String[] args) {

Timer t = new Timer();

t.start();

}

}

This program, as designed, will work...
But we can do better

Module dependency diagram (MDD)

An arrow in a module dependency diagram (MDD) indicates
“depends on” or “knows about”
– Simplistically: “any name mentioned in the source code”

What’s wrong with this diagram?
– Does Timer really need to depend on TimeToStretch?
– Is Timer re-usable in a new context?

TimeToStretch

Timer

Main

Timer depends
on TimeToStretch

Main depends on Timer

Decoupling

Timer needs to call the run method
– Timer does not need to know what the run method does

Weaken the dependency of Timer on TimeToStretch
– Introduce a weaker specification, in the form of an interface or

abstract class

public abstract class TimerTask {
public abstract void run();

}

Timer only needs to know that something (e.g., TimeToStretch)
meets the TimerTask specification

TimeToStretch (version 2)

public class TimeToStretch extends TimerTask {

public void run() {

System.out.println("Stop typing!");

suggestExercise();

}

public void suggestExercise() {

...
}

}

Timer (version 2)
public class Timer {

private TimerTask task;
public Timer(TimerTask task) {

this.task = task;
}
public void start() {

while (true) {
...
task.run();

}
}

}

Main creates a TimeToStretch object and passes it to Timer:
Timer t = new Timer(new TimeToStretch());

t.start(); Pass timer task into timer

Module dependency diagram (version 2)

• Timer depends on TimerTask, not TimeToStretch
– Unaffected by implementation details of TimeToStretch
– Now Timer is much easier to reuse
– Main depends on the constructor for TimeToStretch

• Main still depends on Timer (is this necessary?)

TimeToStretch

Timer

Main

TimerTask

Subclassing

Dependence

Callbacks

Callback: “Code” provided by client to be used by library
• In Java, pass an object with the “code” in a method

Synchronous callbacks:
• Examples: HashMap calls its client’s hashCode, equals
• Useful when library needs the callback result immediately

Asynchronous callbacks:
• Examples: GUI listeners
• Register to indicate interest and where to call back
• Useful when the callback should be performed later, when

some interesting event occurs

The callback design pattern

Going farther: use a callback to invert the dependency

TimeToStretch creates a Timer, and passes in a reference to itself
so the Timer can call it back

– This is a callback – a method call from a module to a client that
it notifies about some condition

The callback inverts a dependency
– Inverted dependency: TimeToStretch depends on Timer

(not vice versa)
• Less obvious coding style, but more “natural” dependency

– Side benefit: Main does not depend on Timer

TimeToStretch (version 3)

public class TimeToStretch extends TimerTask {
private Timer timer;
public TimeToStretch() {

timer = new Timer(this);
}
public void start() {

timer.start();
}
public void run() {

System.out.println("Stop typing!");
suggestExercise();

}
...

}

Pass self into timer
(“Registration”)

Callback entry point

Main (version 3)

TimeToStretch tts = new TimeToStretch();

tts.start();
– Uses a callback in TimeToStretch to invert a dependency
– This MDD shows the inversion of the dependency between
Timer and TimeToStretch (compare to version 1)

TimeToStretch

Timer

Main

TimerTask

Main does not depend on Timer
TimeToStretch depends on Timer

Version 1 again

• Before dependency inversion:

TimeToStretch

Timer

Main

For the sake of illustration

• The dependency inversion would be more obvious to see if we
had not first created TimerTask

• After dependency inversion (without TimerTask):

TimeToStretch

Timer

Main

Main (version 3)

TimeToStretch tts = new TimeToStretch();

tts.start();
– Uses a callback in TimeToStretch to invert a dependency
– This MDD shows the inversion of the dependency between
Timer and TimeToStretch (compare to version 1)

TimeToStretch

Timer

Main

TimerTask

Main does not depend on Timer
TimeToStretch depends on Timer

Concept Summary (example 1)
Coupling – dependency between different parts
• Use coupling only where necessary
• Decouple needlessly coupled components

Reusability
• Uncoupled components are more reusable

Modularity
• The resulting design is modular because each component does

its own functionality (no more, no less)

Callbacks
• The concept of passing in a method that will be called later

We have applied the concept of callbacks to decouple needlessly
coupled components!

Example 2

Design exercise #2

A program to display information about stocks
– Stock tickers
– Spreadsheets
– Graphs

Naive design:
– Make a class to represent stock information
– That class updates all views of that information (tickers,

graphs, etc.) when it changes

• Main class gathers information and stores in Stocks
• Stocks class updates viewers when necessary

Problem: To add/change a viewer, must change Stocks
Better: insulate Stocks from the details of the viewers

Stocks

StockGraph

StockTicker

Spreadsheet

Main

Module dependency diagram

Weaken the coupling

What should Stocks class know about viewers?
– Only needs an update method to call with changed data
– Old way:

void updateViewers() {
ticker.update(newPrice);
spreadsheet.update(newPrice);
graph.update(newPrice);
// Edit this method to
// add a new viewer. L

}

Weaken the coupling
What should Stocks class know about viewers?

– Only needs an update method to call with changed data
– New way: The “observer pattern”

CSE331 Fall 2015 30

interface PriceObserver {
void update(PriceInfo pi);

}

class Stocks {
private List<PriceObserver> observers;
void addObserver(PriceObserver pi) {

observers.add(pi);
}
void notifyObserver(PriceInfo i) {

for (PriceObserver obs : observers)
obs.update(i);

}
…

}

Execute callbacks

Register a
callback

update

Create (or be)
observers

Create Stocks and
add observers

The observer pattern

• Stocks not responsible for viewer creation
• Main passes viewers to Stocks as observers
• Stocks keeps list of PriceObservers, notifies them of changes

• Issue: update method must pass enough information to
(unknown) viewers

Stocks

StockGraph

Spreadsheet

Main

StockTicker

PriceObserver

Create viewers and get observers

A different design: pull versus push
• The Observer pattern implements push functionality
• A pull model: give viewers access to Stocks, let them extract the

data they need

“Push” versus “pull” efficiency can depend on frequency of operations
(Also possible to use both patterns simultaneously.)

Stocks

StockGraph

Spreadsheet

Main

Stocks.new

StockTicker

new(Stocks)

Concept Summary (example 2)
Coupling – dependency between different parts
• We decoupled Stocks from the viewer components

Reusability
• Uncoupled components are more reusable

Modularity
• The resulting design is modular because each component does

its own functionality (no more, no less)

Extensibility – ability to easily add new features
• (different from concept of extending a class to make subclass)
• The application is more extensible now because we could add

more viewers without modifying Stocks

We used the Observer Pattern to improve the Stocks applicaiton!

Example 3

Another example of Observer pattern

// Represents a sign-up sheet of students
public class SignupSheet extends Observable {

private List<String> students
= new ArrayList<String>();

public void addStudent(String student) {
students.add(student);
setChanged();
notifyObservers();

}
public int size() {

return students.size();
}
…

}

java.util.
Observable

SignupSheet inherits many methods including:
void addObserver(Observer o)
protected void setChanged()
void notifyObservers()

An Observer

public class SignupObserver implements Observer {
// called whenever observed object changes
// and observers are notified
public void update(Observable o, Object arg) {

System.out.println("Signup count: "
+ ((SignupSheet)o).size());

}
}

java.util.
Observer

Not relevant to us

cast because
Observable is
not generic L

Registering an observer

SignupSheet s = new SignupSheet();

s.addStudent("billg");

// nothing visible happens

s.addObserver(new SignupObserver());

s.addStudent("torvalds");

// now text appears: "Signup count: 2"

Java's “Listeners” (particularly in GUI classes) are examples of the
Observer pattern

(Feel free to use the Java observer classes in your designs – if they
are a good fit – but you don’t have to use them)

User interfaces: appearance vs. content

It is easy to tangle up appearance and content
– Particularly when supporting direct manipulation (e.g., dragging line

endpoints in a drawing program)
– Another example: program state stored in widgets in dialog boxes

Neither can be understood easily or changed easily

This destroys modularity and reusability
– Over time, it leads to bizarre hacks and huge complexity
– Code must be discarded

Callbacks, listeners, and other patterns can help

See also: Model-View-Controller! (coming soon!)

Announcements

Announcements
• Quiz 6 due Thursday 8/2
• Homework 7 due Thursday 8/2

