
Leah Perlmutter / Summer 2018

CSE 331
Software Design and Implementation

Lecture 15
Generics⟨2⟩

Announcements

Announcements
• Quiz 5 is due tomorrow
• Homework 6 due tomorrow
• Section tomorrow!

– Subtyping – now with worksheet!
– HW7 (Dijkstra’s algorithm)

Big picture

• Last time: Generics intro
• Subtyping and Generics
• Using bounds for more flexible subtyping
• Using wildcards for more convenient bounds
• Digression: Java’s unsoundness(es)
• Java realities: type erasure

Review

List<Number> and List<Integer>

interface List<T> {
boolean add(T elt);
T get(int index);

}

So type List<Number> has:
boolean add(Number elt);
Number get(int index);

So type List<Integer> has:
boolean add(Integer elt);
Integer get(int index);

Java subtyping is invariant with respect to generics
– Neither List<Number> nor List<Integer> subtype of other
– Not covariant and not contravariant

Number

Integer

- Subtype needs stronger
spec than super
- Stronger method spec has:

- weaker precondition
- stronger postcondition

List<Number>

List<Integer>
?

List<Integer>

List<Number>
?

Generic types and subtyping

• List<Integer> and List<Number> are not subtype-related
– No subtyping relationships based on the type argument

• Generic types can have subtyping relationships relying on the
“base” type

• Example: If HeftyBag extends Bag, then
– HeftyBag<Integer> is a subtype of Bag<Integer>
– HeftyBag<Number> is a subtype of Bag<Number>
– HeftyBag<String> is a subtype of Bag<String>
– …

Overview

• Last time: Generics intro
• Subtyping and Generics
• Using bounds for more flexible subtyping
• Using wildcards for more convenient bounds
• Digression: Java’s unsoundness(es)
• Java realities: type erasure

Overview: Bounds and Wildcards

Now: Type bounds e.g. <T extends Number>
– How to use type bounds to write reusable code despite

invariant subtyping
– Elegant technique using generic methods
– General guidelines for making code as reusable as possible

Next: Java wildcards e.g. <? extends Number>
– Essentially provide the same expressiveness
– Less verbose: No need to declare type parameters that

would be used only once
– Better style because Java programmers recognize how

wildcards are used for common idioms
• Easier to read (?) once you get used to it

Bounds

Best type for addAll

interface Set<E> {
// Adds all elements in c to this set
// (that are not already present)
void addAll(_______ c);

}

What is the best type for addAll’s parameter?
– Allow as many clients as possible…
– … while allowing correct implementations

Best type for addAll

interface Set<E> {
// Adds all elements in c to this set
// (that are not already present)
void addAll(_______ c);

}

void addAll(Set<E> c);

Too restrictive:
– Does not let clients pass other collections, like List<E>
– Better: use a supertype interface with just what addAll needs
– This is not related to invariant subtyping [yet]

Best type for addAll

interface Set<E> {
// Adds all elements in c to this set
// (that are not already present)
void addAll(_______ c);

}

void addAll(Collection<E> c);

Too restrictive:
– Client cannot pass a List<Integer> to addAll for a
Set<Number>

– Should be okay because addAll implementations only need to
read from c, not put elements in it

– This is the invariant-subtyping limitation

Best type for addAll

interface Set<E> {
// Adds all elements in c to this set
// (that are not already present)
void addAll(_______ c);

}

<T extends E> void addAll(Collection<T> c);

The fix: A bounded generic type parameter
– Now client can pass a List<Integer> to addAll for a
Set<Number>

– addAll implementations won’t know what element type T is,
but will know it is a subtype of E

• So it cannot add anything to collection c refers to
• But this is enough to implement addAll

Revisit copy method

Earlier we saw this:
<T> void copyTo(List<T> dst, List<T> src) {

for (T t : src)
dst.add(t);

}

Now we can do this, which is more useful to clients:
<T1, T2 extends T1> void copyTo(List<T1> dst,

List<T2> src) {
for (T2 t : src)

dst.add(t);
}

Big picture

• Last time: Generics intro
• Subtyping and Generics
• Using bounds for more flexible subtyping
• Using wildcards for more convenient bounds
• Digression: Java’s unsoundness(es)
• Java realities: type erasure

Wildcards

Wildcards

Syntax: For a type-parameter instantiation (inside the <…>), can
write:

– ? extends Type, some unspecified subtype of Type
– ?, is shorthand for ? extends Object
– ? super Type, some unspecified supertype of Type

A wildcard is essentially an anonymous type variable
– Each ? stands for some possibly-different unknown type
– Use a wildcard when you would use a type variable exactly

once, so no need to give it a name
– Avoids declaring generic type variables
– Communicates to readers of your code that the type’s “identity”

is not needed anywhere else

Examples

[Compare to earlier versions using explicit generic types]

interface Set<E> {
void addAll(Collection<? extends E> c);

}

– More flexible than void addAll(Collection<E> c);
– More idiomatic than (but semantically identical to)

<T extends E> void addAll(Collection<T> c);

More examples

<T extends Comparable<T>> T max(Collection<T> c);
– No change because T used more than once

<T> void copyTo(List<? super T> dst,
List<? extends T> src);

Why this “works”?
– Lower bound of T for where callee puts values
– Upper bound of T for where callee gets values
– Callers get the subtyping they want

• Example: copy(numberList, integerList)
• Example: copy(stringList, stringList)

PECS: Producer Extends, Consumer Super

Where should you insert wildcards?

Should you use extends or super or neither?
– Use ? extends T when you get values (from a producer)

• No problem if it’s a subtype
– Use ? super T when you put values (into a consumer)

• No problem if it’s a supertype
– Use neither (just T, not ?) if you both get and put

<T> void copyTo(List<? super T> dst,
List<? extends T> src);

More on lower bounds

• As we’ve seen, lower-bound ? super T is useful for
“consumers”

• For upper-bound ? exends T, we could always rewrite it not to
use wildcards, but wildcards preferred style where they suffice

• But lower-bound is only available for wildcards in Java
– This does not parse:

<T super Foo> void m(Bar<T> x);
– No good reason for Java not to support such lower bounds

except designers decided it wasn’t useful enough to bother

? versus Object

? indicates a particular but unknown type
void printAll(List<?> lst) {…}

Difference between List<?> and List<Object>:
– Can instantiate ? with any type: Object, String, …
– List<Object> is restrictive; wouldn't take a List<String>

Difference between List<Foo> and List<? extends Foo>
– In latter, element type is one unknown subtype of Foo

Example: List<? extends Animal> might store only
Giraffes but not Zebras

– Former allows anything that is a subtype of Foo in the same list
Example: List<Animal> could store Giraffes and Zebras

Reasoning about wildcard types

Consider all possible instantiations of the wildcard type!

Reasoning about wildcard types

Object o;
Number n;
Integer i;
PositiveInteger p;

List<? extends Integer> lei;

First, which of these is legal?
lei = new ArrayList<Object>();
lei = new ArrayList<Number>();
lei = new ArrayList<Integer>();
lei = new ArrayList<PositiveInteger>();
lei = new ArrayList<NegativeInteger>();

Which of these is
legal?
lei.add(o);
lei.add(n);
lei.add(i);
lei.add(p);
lei.add(null);
o = lei.get(0);
n = lei.get(0);
i = lei.get(0);
p = lei.get(0);

Reasoning about wildcard types

Object o;
Number n;
Integer i;
PositiveInteger p;

List<? super Integer> lsi;

First, which of these is legal?
lsi = new ArrayList<Object>;
lsi = new ArrayList<Number>;
lsi = new ArrayList<Integer>;
lsi = new ArrayList<PositiveInteger>;
lsi = new ArrayList<NegativeInteger>;

Which of these is
legal?
lsi.add(o);
lsi.add(n);
lsi.add(i);
lsi.add(p);
lsi.add(null);
o = lsi.get(0);
n = lsi.get(0);
i = lsi.get(0);
p = lsi.get(0);

Summary: Wildcards

? extends Type, some unspecified subtype of Type
? super Type, some unspecified supertype of Type

A wildcard is essentially an anonymous type variable
• Each ? stands for some possibly-different unknown type
• Use a wildcard when you would use a type variable exactly once,

so no need to give it a name

Reasoning about Wildcards
• Consider all possible instantiations of the wildcard type!

Big picture

• Last time: Generics intro
• Subtyping and Generics
• Using bounds for more flexible subtyping
• Using wildcards for more convenient bounds
• Digression: Java’s unsoundness(es)
• Java realities: type erasure

Type
Unsoundness

Type systems

• Prove absence of certain run-time errors
• In Java:

– methods/fields guaranteed to exist
• compare to, eg, python

– programs without casts don’t throw
ClassCastExceptions

• Type system unsound if it fails to provide its
stated guarantees

Java arrays

We know how to use arrays:
– Declare an array holding Type elements: Type[]
– Get an element: x[i]
– Set an element x[i] = e;

Java included the syntax above because it’s common and concise

But can reason about how it should work the same as this:
class Array<T> {

public T get(int i) { … “magic” … }
public T set(T newVal, int i) {… “magic” …}

}

So: If Type1 is a subtype of Type2, how should Type1[] and
Type2[] be related??

Array subtyping

• Given everything we have learned, if Type1 is a subtype of

Type2, then Type1[] and Type2[] should be unrelated

– Invariant subtyping for generics

– Because arrays are mutable

• But in Java, if Type1 is a subtype of Type2, then Type1[] is a

subtype of Type2[]
– Not true subtyping: the subtype does not support setting an

array index to hold a Type2
– Java (and C#) made this decision in pre-generics days

• Else cannot write reusable sorting routines, etc.

– Backwards compatibility means it’s here to stay

Big picture

• Last time: Generics intro
• Subtyping and Generics
• Using bounds for more flexible subtyping
• Using wildcards for more convenient bounds
• Digression: Java’s unsoundness(es)
• Java realities: type erasure

Type
Erasure

Type erasure

All generic types become type Object once compiled
– Big reason: backward compatibility with ancient byte code
– So, at run-time, all generic instantiations have the same type

List<String> lst1 = new ArrayList<String>();
List<Integer> lst2 = new ArrayList<Integer>();
lst1.getClass() == lst2.getClass() // true

Cannot use instanceof to discover a type parameter

Collection<String> cs = new ArrayList<String>();
if (cs instanceof Collection<String>) { // illegal
...

}

Type Erasure: Consequences

public class Foo<T> {
private T aField; // ok
private T[] anArray; // ok

public Foo() {
aField = new T(); // compile-time error
anArray = new T[10]; // compile-time error

}
}

You cannot create objects or arrays of a parameterized type
(Actual type info not available at runtime)

Generics and casting
Casting to generic type results in an important warning

List<Cat> cats = new ArrayList<Cat>(); // ok
List<?> mystery = cats;
List<String> ls = (List<String>) mystery; // warn
ls.add("not a cat"); // undetected error
...
Cat c = cats.remove(0); // ClassCastException

• Compiler gives an unchecked warning, since this is something the
runtime system will not check for you

• Usually, if you think you need to do this, you're wrong

Object can also be cast to any generic type L
public static <T> T badCast(T t, Object o) {
return (T) o; // unchecked warning

}

NEVER
DO

THIS!

The bottom-line

• Java guarantees a List<String> variable always holds a
(subtype of) the raw type List

• Java does not guarantee a List<String> variable always has
only String elements at run-time
– Will be true unless unchecked casts involving generics are

used
– Compiler inserts casts to/from Object for generics

• If these casts fail, hard-to-debug errors result: Often far
from where conceptual mistake occurred

• Don’t ignore warnings!
– You’re violating good style/design/subtyping/generics
– You’re risking difficult debugging

Recall equals

class Node {
…
@Override
public boolean equals(Object obj) {

if (!(obj instanceof Node)) {
return false;

}
Node n = (Node) obj;
return this.data().equals(n.data());

}
…

}

equals for a parameterized class

class Node<E> {
…
@Override
public boolean equals(Object obj) {

if (!(obj instanceof Node<E>)) {
return false;

}
Node<E> n = (Node<E>) obj;
return this.data().equals(n.data());

}
…

}

Erasure: Type
arguments do not
exist at runtime

Equals for a parameterized class

class Node<E> {
…
@Override
public boolean equals(Object obj) {

if (!(obj instanceof Node<?>)) {
return false;

}
Node<E> n = (Node<E>) obj;
return this.data().equals(n.data());

}
…

}

More erasure: At run
time, do not know what
E is and will not be
checked, so don’t
indicate otherwise

Equals for a parameterized class

class Node<E> {
…
@Override
public boolean equals(Object obj) {

if (!(obj instanceof Node<?>)) {
return false;

}
Node<?> n = (Node<?>) obj;
return this.data().equals(n.data());

}
…

}

Works if the type of obj
is Node<Elephant>
or Node<String> or

…

Node<Elephant> Node<String>

Node<? extends Object>
Leave it to here to “do the
right thing” if this and n

differ on element type

Summary: Type Erasure

• At runtime, Java does not know the exact types of generics
• Sort of awkward but required for backward compatibility

Wrapup

Generics clarify your code

interface Map {
Object put(Object key, Object value);
…

}

interface Map<Key,Value> {
Value put(Key key, Value value);
…

}

plus casts in client code
→ possibility of run-time errors

Tips when writing a generic class

• Start by writing a concrete instantiation
– Get it correct (testing, reasoning, etc.)
– Consider writing a second concrete version

• Generalize it by adding type parameters
– Think about which types are the same or different
– The compiler will help you find errors

• As you gain experience, it will be easier to write generic code
from the start

Summary

Type bounds e.g. <T extends Number>
– Make code more flexible!

Java wildcards
– Anonymous type variables (used only once)
? extends Type, some unspecified subtype of Type
? super Type, some unspecified supertype of Type

Type Erasure
– Java doesn’t know generic types at runtime

• necessary for backward compatibility

Announcements

Announcements
• Quiz 5 is due tomorrow
• Homework 6 due tomorrow
• Section tomorrow!

– Subtyping – now with worksheet!
– HW7 (Dijkstra’s algorithm)

