CSE 331

Software Design and Implementation

Lecture 12
Subtypes and Subclasses

Leah Perlmutter / Summer 2018

Announcements

Announcements

Building
- You must run ant validate to make sure your homework builds

In real life, software that doesn’t build on the build server is no
software at all

Submitting on time
Reminder: max 2 late days per assignment.
The end of late days is 48 hours after the deadline
Work submitted after this deadline will not receive credit

Announcements

Section tomorrow!

— includes extra help for hw5 at the end of class.
No reading assignment this week

— Next reading assignment is due Wednesday 7/25
HW5 due tomorrow
Office Hours update

— Haiqgiao’s office hours permanently moved from Friday
morning to Thursday night

Midterm to be graded on Sunday
CTL feedback

Subtyping

The Liskov Substitution Principle

Let P (x) be a property provable about
objects x of type T. Then P (y) should be
true for objects y of type S where Sis a

subtype of T.

This means B is a subtype of
A if anywhere you can use an
A, you could also use a B.

-- Barbara Liskov

The Liskov Substitution Principle

Let P (x) be a property provable about
objects x of type T. Then P (y) should be
true for objects y of type S where Sis a

subtype of T. "Il see you

again soon! _N

This means B is a subtype of
A if anywhere you can use an
A, you could also use a B.

-- Barbara Liskov

What is subtyping?

Necessary but not sufficient “every B is an A”

— Example: In a library database:

- Every book is a library holding

o — >

- Every CD is a library holding

— “B is a subtype of A” means:

“every object that satisfies the rules for a B
also satisfies the rules for an A”

LibraryHolding

T

Book

I

CD

Shape

T

1

Circle | | Rhombus

Goal: code written using A's specification operates correctly even if

given a B

— Plus: clarify design, share tests, (sometimes) share code

Subtypes are substitutable

Subtypes are substitutable for supertypes

— Instances of subtype won't surprise client by failing to satisfy
the supertype's specification

— Instances of subtype won't surprise client by having more
expectations than the supertype's specification

This follows the “Principle of Least Surprise”

We say that B is a frue subtype of A if B has a stronger
specification than A

— This is not the same as a Java subtype

— Java subtypes that are not true subtypes are confusing and
dangerous

 But unfortunately common poor-design ®

Subtyping vs. subclassing

Substitution (subtype) — a specification notion

— B is a subtype of A iff an object of B can masquerade as an
object of A in any context

— About satisfiability (behavior of a B is a subset of A’s spec)

Inheritance (subclass) — an implementation notion
— Factor out repeated code
— To create a new class, write only the differences

Java purposely merges these notions for classes:
— Every subclass is a Java subtype
 But not necessarily a true subtype

Inheritance makes adding functionality easy

Suppose we run a web store with a class for products...

class Product {
private String title;
private String description;
private int price; // in cents
public int getPrice () {
return price;
}
public int getTax () ({
return (int) (getPrice() * 0.096) ;

}

}
... and we need a class for products that are on sale

We know: don’t copy code!

We would never dream of cutting and pasting like this:

class SaleProduct {
private String title;
private String description;
private int price; // in cents
private float factor;
public int getPrice () {
return (int) (price*factor);
}
public int getTax() ({
return (int) (getPrice() * 0.096) ;

}

Inheritance makes small extensions small

Much better:

class SaleProduct extends Product {
private float factor;

public int getPrice() {
return (int) (super.getPrice () *factor);

}

Benefits of subclassing & inheritance

Don’t repeat unchanged fields and methods
— In implementation

- Simpler maintenance: fix bugs once
— In specification

« Clients who understand the superclass specification need
only study novel parts of the subclass

— Modularity: can ignore private fields and methods of
superclass (if properly defined)

— Differences not buried under mass of similarities

Ability to substitute new implementations
— No client code changes required to use new subclasses

Subclassing can be misused

Poor planning can lead to a muddled class hierarchy
— Relationships may not match untutored intuition

- Poor design can produce subclasses that depend on many
implementation details of superclasses

- Changes in superclasses can break subclasses
— “fragile base class problem”

- Subtyping and implementation inheritance are orthogonal!
— Subclassing gives you both
— Sometimes you want just one
 Interfaces: subtyping without inheritance [see also section]
- Composition: use implementation without subtyping
— Can seem less convenient, but often better long-term

Is every square a rectangle?

interface Rectangle {
// effects: fits shape to given size:
/] - this_,.width = w, this,..height =h
void setSize(int w, int h);

}

interface Square extends Rectangle {..}

Are any of these good options for Square’s setSize specification?
1. // requires: w =h
// effects: fits shape to given size
void setSize(int w, int h);
2.// effects: sets all edges to given size
void setSize (int edgelength) ;
3.// effects: sets this.width and this.height to w
void setSize(int w, int h);
4. // effects: fits shape to given size

// throws BadSizeException if w !'= h
void setSize(int w, int h) throws BadSizeException;

Square, Rectangle Unrelated (Subtypes)

Square is not a (true subtype of) Rectangle:
— Rectangles are expected to have a width and height
that can be mutated independently

— Squares Vviolate that expectation, could surprise client
Rectangle is not a (true subtype of) Square:

— Squares are expected to have equal widths and heights

- Rectangles violate that expectation, could surprise client
Subtyping is not always intuitive

— Benefit: it forces clear thinking and prevents errors

Solutions:
— Make them unrelated (or siblings)
— Make them immutable (!)
« Recovers mathematical intuition

Inappropriate subtyping in the JDK

class Hashtable<K,V> {
public void put (K key, V wvalue) {..}
public V get (K key) {..}

}

// Keys and values are strings.
class Properties extends Hashtable<Object,Object> {

public void setProperty(String key, String val) {
put (key,val) ;

}
public String getProperty (String key) {

return (String)get (key)
}

} Properties p = new Properties()
Hashtable tbl = p;
tbl.put("One", 1);
p.getProperty("One"); // crash!

Violation of rep invariant

Properties class has a simple rep invariant:
— Keys and values are Strings

But client can treat Properties as a Hashtable
— Can put in arbitrary content, break rep invariant

From Javadoc:

Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. ... If the store or
save method is called on a "compromised” Properties object
that contains a non-String key or value, the call will fail.

Solution 1: Generics

Bad choice:
class Properties extends Hashtable<Object,Object> ({

}
Better choice:

class Properties extends Hashtable<String,String> ({

JDK designers didn’t do this. Why?
— Backward-compatibility (Java didn’t used to have generics)
— Postpone talking about generics: upcoming lecture

Solution 2: Composition

class Properties ({
private Hashtable<Object, Object> hashtable;

public void setProperty (String key, String wvalue) ({
hashtable.put (key,value) ;

}

public String getProperty (String key) {
return (String) hashtable.get (key) ;

}

Liskov Substitution Principle

If B is a subtype of A, a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B
— Anything provable about an A is provable about a B

— If an instance of subtype is treated purely as supertype (only
supertype methods/fields used), then the result should be
consistent with an object of the supertype being manipulated
(Principle of Least Surprise)

B is permitted to strengthen properties and add properties
— Fine to add new methods (that preserve invariants)
— An overriding method must have a stronger (or equal) spec

B is not permitted to weaken a spec
— No method removal
— No overriding method with a weaker spec

Liskov Substitution Principle

Constraints on methods
— For each supertype method, subtype must have such a method
« Could be inherited or overridden

Each overriding method must strengthen (or match) the spec:
— Ask nothing extra of client (“weaker precondition”)
* Requires clause is at most as strict as in supertype’s method
— Guarantee at least as much (“stronger postcondition”)
« Effects clause is at least as strict as in the supertype method
- No new entries in modifies clause
« Promise more (or the same) in returns clause

« Throws clause must indicate the same circumstances and
must throw a subtype (or same exception type)

Spec strengthening: argument/result types

Method inputs: A| | LibraryHolding
— In thebory, alrgurréen’.ct’;]ypes intA’s foo 1 T T
m r Wi r
inal?zl’s ?ooe(rg‘c?c():r?travari::cpee”) P B Book CD
— Places no extra demand on the clients
— But Java does not have such overriding Shape
- (Why? — exercise for the reader) T 1
Method results: Circle|| Rhombus

— Result type of A’s foo may be replaced by
a subtype in B’s foo (“covariance”)

— No new exceptions (for values in the domain)
— Existing exceptions can be replaced with subtypes
(None of this violates what client can rely on)

Substitution exercise

Suppose we have a method which, when given one product,
recommends another:
class Product {
Product recommend (Product ref) ;

}

Which of these are possible forms of this method in SaleProduct
(a true subtype of Product)?

Product recommend (SaleProduct ref); // bad
SaleProduct recommend (Product ref); // ok
Product recommend (Object ref); // OK, but is Java

overloading

Product recommend (Product ref) // bad

throws NoSaleException;

Java subtyping/subclassing

Java types:
— Defined by classes, interfaces, primitives

Java subtyping stems from B extends A and
B implements A declarations

In a Java subtype/subclass, each corresponding method has:
— Same argument types

- If different, overloading: unrelated methods
— Compatible (covariant) return types

- A (somewhat) recent language feature, not reflected in
(e.g.) clone

— No additional declared exceptions

Java subtyping guarantees

A variable’s run-time type (i.e., the class of its run-time value) is a
Java subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error

If a variable of declared (compile-time) type T1 holds a
reference to an object of actual (runtime) type T2, then T2 must
be a Java subtype of T1

Corollaries:

— Objects always have implementations of the methods
specified by their declared type

— Ifall subtypes are true subtypes, then all objects meet the
specification of their declared type

Rules out a huge class of bugs

Summary so far

Liskov Substitution Principle (LSP)

If B is a subtype of A then you could use a B anywhere you can
use an A

Code relying on A’s spec operates correctly if given a B
Related to Principle of Least Surprise

True subtypes follow the LSP!
Subtype must have a stronger spec than the supertype
Subtype’s methods have stronger spec
— weaker preconditions, stronger postconditions

Java subtypes

Use Java subtyping if you want implementation reuse AND you
have a true subtype

Otherwise... need a different solution

Summary so far

If B is a true subtype of A...
B can be a Java subclass of A
But... what if A is not “subclass-ready”?
But... what if A and B do not share any implementation?

If B is not a true subtype of A
B should NOT be a Java subclass of A
Java will allow B to be a subclass of A
— but there are pitfalls (e.g. square/rectangle)
— Java compiler is not smart enough to protect you
But... what if | want to reuse code from A in B?
— code reuse is good; duplication is evil!
— [dramatic transition to next section]

Alternatives to Subtyping:

Composition
and Interfaces

Inheritance can break encapsulation

public class InstrumentedHashSet<E>
extends HashSet<E> {

private int addCount = 0; // count # insertions
public InstrumentedHashSet (Collection<? extends E> c) {
super (c) ;

}
public boolean add(E o) {

addCount++;
return super.add (o) ;
}
public boolean addAll (Collection<? extends E> c) {
addCount += c.size();
return super.addAll (c);

}
public int getAddCount() { return addCount; }

}

Dependence on implementation

What does this code print?
InstrumentedHashSet<String> s =
new InstrumentedHashSet<String>() ;
System.out.println(s.getAddCount()) ; // 0
s.addAll (Arrays.asList ("CSE", "331"));
System.out.println(s.getAddCount());, // 42!

- Answer depends on implementation of addAll in HashSet
— Different implementations may behave differently!
— If HashSet’s addall calls add, then double-counting

« AbstractCollection’s addAll specification:

— “Adds all of the elements in the specified collection to this
collection.”

— Does not specify whether it calls add
- Lesson: Subclassing often requires designing for extension

See Effective Java!

L

Solutions

1. Design HashSet for extension
— Indicate all self-calls
— Unfortunately, this is not possible
2. Avoid self-calls in subclass InstrumentedHashSet:
“Re-implement” methods such as addAll
« Requires re-implementing methods

Neither of these is a great solution. Try an alternative to
subclassing.

3. Avoid self-calls in InstrumentedHashSet:
Use a wrapper (composition)!

Solution 3: composition

public class InstrumentedHashSet<E> ({ ,4! Delegate
private final HashSet<E> s = new HashSet<E>() ;
private int addCount = 0;
public InstrumentedHashSet (Collection<? extends E> c) {
this.addAll (c) ;

}
public boolean add(E o) {

addCount++; return s.add (o) ;

}

public boolean addAll (Collection<? extends E> c) {
addCount += c.size(); No longer calls
return s.addall (c); InstrumentedHashSet’s

} \| add method

public int getAddCount() { return addCount; }
// ... and every other method specified by HashSet<E>

Summary so far: Composition

Composition (wrappers, delegation)
Easy to reason about; self-calls are irrelevant
Example of a “wrapper” class
Works around badly-designed / badly-specified classes
Disadvantages (often worthwhile):
— Does not preserve subtyping
— Boilerplate code (your IDE should help you)

Implementation reuse without inheritance
Great solution for implementation reuse when not a proper subtype

Acceptable when you have a proper subtype but the superclass is
not subclass-ready

Composition breaks polymorphism

« InstrumentedHashSet is not a HashSet anymore
— So can't easily substitute it

« It may be a true subtype of HashSet
— But Java doesn't know that!
— Java requires declared relationships
— Not enough just to meet specification

« Interfaces to the rescue
— Can declare that we implement interface Set
— If such an interface exists

Interfaces reintroduce Java subtyping

public class InstrumentedHashSet<E> implements Set<E>{

private final Set<E> s = new HashSet<E>() ;

private int addCount = 0;

public InstrumentedHashSet (Collection<? extends E> c) {
this.addAll (c) ;

}

public boolean add(E o) {
addCount++;
return s.add (o) ;

}

public boolean addAll (Collection<? extends E> c) {
addCount += c.size () ;
return s.addAll (c);

}

public int getAddCount() { return addCount; }

// ... and every other method specified by Set<E>

Interfaces to the rescue!

Provide interfaces for your functionality
— Client code to interfaces rather than concrete classes
— Allows different implementations later
— Facilitates composition, wrapper classes
- Basis of lots of useful, clever techniques
- We'll see more of these later (Design Patterns)
— Lets an object have more types than inheritance alone

Side note: abstract classes

Consider also providing helper/template abstract classes

— Abstract class is a hybrid between interface and concrete
class

- Cannot be instantiated
- Can implement the methods or leave them to subclasses

— Can minimize number of methods that new implementation
must provide

— Makes writing new implementations much easier

— Not necessary to use them to implement an interface, so
retain freedom to create radically different implementations
that meet an interface

Recommended by
Effective Java!

Java genealogy

// root interface of collection hierarchy
interface Collection<E>
// skeletal implementation of Collection<E>
abstract class AbstractCollection<E>
implements Collection<E>
// type of all ordered collections
interface List<E> extends Collection<E>
// skeletal implementation of List<E>
abstract class AbstractList<E>
extends AbstractCollection<E>
implements List<E>
// an old friend...
class ArrayList<E> extends AbstractList<E>

Why interfaces instead of classes?

Java design decisions:
— A class has exactly one superclass
— A class may implement multiple interfaces
— An interface may extend multiple interfaces

Observation:
— Multiple superclasses are difficult to use and to implement
— Multiple interfaces, single superclass gets most of the benefit

Pluses and minuses of inheritance

Inheritance is a powerful way to achieve code reuse

Inheritance can break encapsulation

— A subclass may need to depend on unspecified details of the
implementation of its superclass

- E.g., pattern of self-calls
— Subclass may need to evolve in tandem with superclass

- Okay within a package where implementation of both is
under control of same programmer

Authors of superclass should design and document self-use, to
simplify extension
— Otherwise, avoid implementation inheritance and use
composition instead

Summary

Subtyping
LSP: If B is a subtype of A then you could use a B anywhere
you can use an A

A proper subtype follows the LSP!

Alternatives to subtyping
Interfaces: subtyping, without implementation inheritance
— can have multiple interface types but only one parent class

— If your proposed subtype follows the LSP, but you want
multiple supertypes, use interfaces!

Composition: implementation reuse without subtyping

— If your proposed subtype does not follow the LSP, use
composition!

Cheat Sheet

B is a true subtype of A. How do | code this up?
— Use java subclassing! (B extends A)

B is not a true subtype of A, but shares a lot with A. How do | code
this up?
— It's tempting to use java subclassing when B is not a true
subtype of A (Square/Rectangle)

- avoid it, since you might run into issues like the
square/rectangle issue

— But I don't want to duplicate all the code in A. Duplication is evil.
« you're right! try Composition. (B has a A)

B is a true subtype of A, but has an entirely different
implementation. | don't want to inherit anything, but Java needs to
know they're the same type for polymorphism to work. How do |
code this up?

— A and B should implement the same interface.

Cheat Sheet

B is a true subtype of A, but A is an existing class that | can't
modify and it's not subclass-ready
(Hashtable/InstrumentedHashTable)

— Composition will be helpful here too! (B has a A)

— And, if possible, have B implement the same interface as A,
for polymorphism.

D is a true subtype of A and of T. Java only has single
inheritance. How do | code up this relationship?

— Use interfaces. D can implement interface A and interface T.
Or extend one as a class and implement the other as an
interface.

Announcements

Announcements

Building
You must run ant validate to make sure your homework builds

Submitting on time

Work submitted after the late days deadline will not receive
credit

HW5 due tomorrow
Office Hours update

— Haiqgiao’s office hours permanently moved from Friday
morning to Thursday night

