
Leah Perlmutter / Summer 2018

CSE 331
Software Design and Implementation

Lecture 10
Equality and Hashcode

Announcements

Announcements
This coming week is the craziest part of the quarter!
• Quiz 4 due tomorrow 10 pm
• HW4 due tomorrow 10 pm

• HW5 due next Thursday
– Hardest hw in 331 and future hws build on it

• Section tomorrow!
– important things you need to know for HW5

• Midterm review session Friday 3:30-5 in this room
• Midterm Monday 1:10-2:10 in this room

• Mid-quarter course evaluation Friday (during part of class)
– Visitor: Jamal from the Center for Teaching and Learning

Equality

Object equality

A simple idea??
– Two objects are equal if they have the same value

A subtle idea: intuition can be misleading
– Same object or same contents?
– Same concrete value or same abstract value?
– Same right now or same forever?
– Same for instances of this class or also for subclasses?
– When are two collections equal?

• How related to equality of elements? Order of elements?
• What if a collection contains itself?

– How can we implement equality efficiently?

Mathematical properties of equality

Reflexive a.equals(a) == true
– An object equals itself

Symmetric a.equals(b) Û b.equals(a)
– Order doesn’t matter

Transitive a.equals(b) Ù b.equals(c) Þ a.equals(c)
– “transferable”

In mathematics, a relation that is reflexive, transitive,
and symmetric is an equivalence relation

Û Two-way
implication
(if and only if)

Reference equality

• Reference equality means an object is equal only to itself
– a == b only if a and b refer to (point to) the same object

• Reference equality is an equivalence relation
– Reflexive a==a
– Symmetric a==b Û b==a
– Transitive a==b Ù b==c Þ a==c

• Reference equality is the smallest equivalence relation on objects
– “Hardest” to show two objects are equal (must be same object)
– Cannot be any more restrictive without violating reflexivity
– Sometimes but not always what we want

What might we want?

• Sometimes want equivalence relation bigger than ==
– Java takes OOP approach of letting classes override equals

Date d1 = new Date(12,27,2013);
Date d2 = new Date(12,27,2013);
Date d3 = d2;
// d1==d2 ?
// d2==d3 ?
// d1.equals(d2) ?
// d2.equals(d3) ?

month

day

year

12

27
2013

d1
d2
d3

month

day

year

12

27
2013

Overriding
Object’s equals

Object.equals method

public class Object {
public boolean equals(Object o) {

return this == o;
}
…

}
• Implements reference equality
• Subclasses can override to implement a different equality
• But library includes a contract equals should satisfy

– Reference equality satisfies it
– So should any overriding implementation
– Balances flexibility in notion-implemented and what-clients-

can-assume even in presence of overriding

equals specification
public boolean equals(Object obj)

Indicates whether some other object is “equal to” this one.
The equals method implements an equivalence relation:

• It is reflexive: for any reference value x, x.equals(x)
should return true.

• It is symmetric: for any reference values x and y,
x.equals(y) should return true if and only if
y.equals(x) returns true.

• It is transitive: for any reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns
true, then x.equals(z) should return true.

• It is consistent: for any reference values x and y, multiple
invocations of x.equals(y) consistently return true or
consistently return false, provided no information used
in equals comparisons on the object is modified.

• For any non-null reference value x, x.equals(null)
should return false.

equals specification

• Equals contract is:
– Weak enough to allow different useful overrides
– Strong enough so clients can assume equal-ish things

• Example: To implement a set
– Complete enough for real software

• So:
– Equivalence relation
– Consistency, but allow for mutation to change the answer
– Asymmetric with null

• null.equals(a) raises exception
• for non-null a, a.equals(null) must return false

An example

A class where we may want equals to mean equal contents

public class Duration {
private final int min; // RI: min>=0
private final int sec; // RI: 0<=sec<60
public Duration(int min, int sec) {

assert min>=0 && sec>=0 && sec<60;
this.min = min;
this.sec = sec;

}
}

– Should be able to implement what we want and satisfy the
equals contract…

How about this?

public class Duration {

…

public boolean equals(Duration d) {
return this.min==d.min && this.sec==d.sec;

}

}

Two bugs:
1. Violates contract for null (not that interesting)

– Can add if(d==null) return false;
• But our fix for the other bug will make this unnecessary

2. Does not override Object’s equals method (more interesting)

Overloading: String.indexOf

int indexOf(int ch)
Returns the index within this string of the first occurrence of the
specified character.

int indexOf(int ch, int fromIndex)
Returns the index within this string of the first occurrence of the
specified character, starting the search at the specified index.

int indexOf(String str)
Returns the index within this string of the first occurrence of the
specified substring.

int indexOf(String str, int fromIndex)
Returns the index within this string of the first occurrence of the
specified substring, starting at the specified index.

Overriding: String.equals

In Object:
public boolean equals(Object obj)
... The equals method for class Object implements the most
discriminating possible equivalence relation on objects; that is, for
any non-null reference values x and y, this method returns true if
and only if x and y refer to the same object (x == y has the
value true) ...

In String:
public boolean equals(Object anObject)
Compares this string to the specified object. The result is true if and
only if the argument is not null and is a String object that represents
the same sequence of characters as this object.

Overriding vs. Overloading

Consider the following classes

class Foo extends Object {
Shoe m(Shoe x, Shoe y){ ... }

}

class Bar extends Foo {...}

Object
↓
Foo
↓
Bar

Footwear
↓

Shoe
↓

HighHeeledShoe

Overriding vs. Overloading

Method in Foo
Shoe m(Shoe x, Shoe y){ ... }

Possible Methods in Bar
Shoe m(Shoe q, Shoe z) { ... }
HighHeeledShoe m(Shoe x, Shoe y) { ... }
Shoe m(FootWear x, HighHeeledShoe y) { ... }
Shoe m(FootWear x, FootWear y) { ... }
Shoe m(HighHeeledShoe x, HighHeeledShoe y) { ... }
Shoe m(Shoe y) { ... }
FootWear m(Shoe x, Shoe y) { ... }
Shoe z(Shoe x, Shoe y) { ... }

• The result is method overriding
• The result is method overloading
• The result is a type-error
• None of the above

Foo
↓

Bar

Footwear
↓

Shoe
↓

HighHeeledShoe

overriding

overloading
overriding

overloading
overloading

overloading
type error

new method

Overloading versus overriding

In Java:
– A class can have multiple methods with the same name and

different parameters (number or type)
– A method overrides a superclass method only if it has the

same name and exact same argument types

So Duration’s boolean equals(Duration d) does not
override Object’s boolean equals(Object d)

– Overloading is sometimes useful to make several closely
related functions with the same name

– Overloading is sometimes confusing since the rules for what-
method-gets-called are complicated

– [Overriding covered in CSE143, but not overloading]

Overload resolution

Java’s language spec for resolving Method Invocations (including
overload resolution) is about 18 pages long.

In summary
• The declared types of parameters and the object it’s called on

determine the signature of the method to call
– declared type is also known as compile-time type

• The runtime type of the object it’s called on determines which
implementation of that method signagure gets called
– this is called dynamic dispatch

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html

Example: Overloading

public class Duration {
public boolean equals(Duration d) {…}
…

}
Duration d1 = new Duration(10,5);
Duration d2 = new Duration(10,5);
Object o1 = d1;
Object o2 = d2;
d1.equals(d2);
o1.equals(o2);
d1.equals(o2);
o1.equals(d2);
d1.equals(o1);

// true
// false(!)

// true [using Object’s equals]

// false(!)
// false(!)

overloading...oops!

Overload resolution

In summary
• The declared types of parameters and the object it’s called on

determine the signature of the method to call
• The runtime type of the object it’s called on determines which

implementation of that method signagure gets called

o1.equals(d2)
• o1 has declared type Object so the signature

equals(Object) is chosen
• The runtime type of o1 is Duration, so Duration’s

equals(Object) method gets called. Since Duration
doesn’t implement equals(Object), the superclass Object’s
implementation is called.

Overload resolution

In summary
• The declared types of parameters and the object it’s called on

determine the signature of the method to call
• The runtime type of the object it’s called on determines which

implementation of that method signagure gets called

o1.equals(o2)
• o2 has declared type Object so the signature

equals(Object) is chosen
• The runtime type of o1 is Duration, so Duration’s

equals(Object) method is chosen. Since Duration doesn’t
implement equals(Object), the superclass Object’s
implementation is called.

Example fixed (mostly)

public class Duration {
public boolean equals(Object d) {…}
…

}
Duration d1 = new Duration(10,5);
Duration d2 = new Duration(10,5);
Object o1 = d1;
Object o2 = d2;
d1.equals(d2);
o1.equals(o2);
d1.equals(o2);
o1.equals(d2);
d1.equals(o1);

// true
// true [overriding]
// true [overriding]
// true [overriding]
// true [overriding]

But wait!

This doesn’t actually compile:

public class Duration {

…

public boolean equals(Object o) {
return this.min==o.min && this.sec==o.sec;

}

}

Really fixed now
public class Duration {

public boolean equals(Object o) {
if(! o instanceof Duration)

return false;
Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Cast cannot fail
• We want equals to work on any pair of objects
• Gets null case right too (null instanceof C always false)
• So: rare use of cast that is correct and idiomatic

– This is what you should do (cf. Effective Java)

Cast statement

Satisfies the contract
public class Duration {

public boolean equals(Object o) {
if(! o instanceof Duration)

return false;
Duration d = (Duration) o;
return this.min==d.min && this.sec==d.sec;

}
}

• Reflexive: Yes
• Symmetric: Yes, even if o is not a Duration!

– (Assuming o’s equals method satisfies the contract)
• Transitive: Yes, similar reasoning to symmetric

Even better

• Great style: use the @Override annotation when overriding

public class Duration {
@Override
public boolean equals(Object o) {

…
}

}

• Compiler warning if not actually an override
– Catches bug where argument is Duration or String or ...
– Alerts reader to overriding

• Concise, relevant, checked documentation

Summary: Overriding Equals

Equals contract – Equals must implement an equivalence relation
• Reflexive a.equals(a)
• Symmetric a.equals(b) Û b.equals(a)
• Transitive a.equals(b) Ù b.equals(c) Þ a.equals(c)

Equals must override, not overload Object’s equals
• Must take in a parameter of type Object
• After checking instanceof, can cast argument to the right class

Equals and
Subclassing

Okay, so are we done?

• Done:
– Understanding the equals contract
– Implementing equals correctly for Duration

• Overriding
• Satisfying the contract [for all types of arguments]

• Alas, matters can get worse for subclasses of Duration
– No perfect solution, so understand the trade-offs…

Two subclasses

class CountedDuration extends Duration {
public static numCountedDurations = 0;
public CountedDuration(int min, int sec) {

super(min,sec);
++numCountedDurations;

}
}
class NanoDuration extends Duration {

private final int nano;
public NanoDuration(int min, int sec, int nano){

super(min,sec);
this.nano = nano;

}
public boolean equals(Object o) { … }
…

}

CountedDuration is good

• CountedDuration does not override equals

• Will (implicitly) treat any CountedDuration like a Duration
when checking equals

• Any combination of Duration and CountedDuration objects
can be compared
– Equal if same contents in min and sec fields
– Works because o instanceof Duration is true when
o is an instance of CountedDuration

Now NanoDuration [not so good!]

• If we don’t override equals in NanoDuration, then objects
with different nano fields will be equal

• So using everything we have learned:

@Override
public boolean equals(Object o) {

if (! (o instanceof NanoDuration))
return false;

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

• But we have violated the equals contract
– Hint: Compare a Duration and a NanoDuration

The symmetry bug

public boolean equals(Object o) {
if (! (o instanceof NanoDuration))

return false;
NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

This is not symmetric!
Duration d1 = new NanoDuration(5, 10, 15);

Duration d2 = new Duration(5, 10);

d1.equals(d2);

d2.equals(d1);

// false

// true

Fixing symmetry
This version restores symmetry by using Duration’s equals if the
argument is a Duration (and not a NanoDuration)

public boolean equals(Object o) {
if (! (o instanceof Duration))

return false;
// if o is a normal Duration, compare without nano
if (! (o instanceof NanoDuration))
return super.equals(o);

NanoDuration nd = (NanoDuration) o;
return super.equals(nd) && nano == nd.nano;

}

Alas, this still violates the equals contract
• Transitivity: a.equals(b) Ù b.equals(c) Þ a.equals(c)

The transitivity bug
Duration d1 = new NanoDuration(1, 2, 3);

Duration d2 = new Duration(1, 2);

Duration d3 = new NanoDuration(1, 2, 4);

d1.equals(d2);

d2.equals(d3);

d1.equals(d3);

NanoDuration

min

sec

nano

1
2
3

Duration

min

sec

1
2

NanoDuration

min

sec

nano

1
2
4

// true
// true

// false!

No great solution

• Effective Java says not to (re)override equals like this
– Unless superclass is non-instantiable (e.g., abstract)
– “Don’t do it” a non-solution given the equality we want for
NanoDuration objects

• Two far-from-perfect approaches on next two slides:
1. Don’t make NanoDuration a subclass of Duration
2. Change Duration’s equals such that only Duration

objects that are not (proper) subclasses of Duration are
equal

Bad idea: the getClass trick
Different run-time class checking to satisfy the equals contract:

@Override
public boolean equals(Object o) { // in Duration

if (o == null)
return false;

if (! o.getClass().equals(getClass()))
return false;

Duration d = (Duration) o;
return d.min == min && d.sec == sec;

}

But now Duration objects never equal CountedDuration objects
– Subclasses do not “act like” instances of superclass because

behavior of equals changes with subclasses
– Generally considered wrong to “break” subtyping like this

Composition
Choose composition over subclassing

– Often good advice: many programmers overuse (abuse)
subclassing [see future lecture on proper subtyping]

public class NanoDuration {
private final Duration duration;
private final int nano;
…

}
NanoDuration and Duration now unrelated

– No presumption they can be compared to one another
Solves some problems, introduces others

– Can’t use NanoDurations where Durations are expected
(not a subtype)

– No inheritance, so need explicit forwarding methods

Slight alternative

• Can avoid some method redefinition by having Duration and
NanoDuration both extend a common abstract class
– Or implement the same interface
– Leave overriding equals to the two subclasses

• Keeps NanoDuration and Duration from being used “like
each other”

• But requires advance planning or willingness to change
Duration when you discover the need for NanoDuration

Class hierarchy

AbstractDuration

Duration

CountedDuration

NanoDuration

Summary: Equals and Subclassing

• Be careful when creating subclasses – equals needs to work!
• NanoDuration is not a proper Java subclass of Duration

since we can’t get equals to work
– More on the nuances of subclassing later!

• Unresolvable tension between
– “What we want for equality”
– “What we want for subtyping”

• This is one of the limitations of Java

Announcements

Announcements
This coming week is the craziest part of the quarter!
• Quiz 4 due tomorrow 10 pm
• HW4 due tomorrow 10 pm

• HW5 due next Thursday
– Hardest hw in 331 and future hws build on it

• Section tomorrow!
– important things you need to know for HW5

• Midterm review session Friday 3:30-5 in this room
• Midterm Monday 1:10-2:10 in this room

• Mid-quarter course evaluation Friday (during part of class)
– Visitor: Jamal from the Center for Teaching and Learning

Equals and
Collections

hashCode

Another method in Object:
public int hashCode()

“Returns a hash code value for the object. This method is
supported for the benefit of hashtables such as those provided by
java.util.HashMap.”

Contract (again essential for correct overriding):
– Self-consistent:

o.hashCode() == o.hashCode()
...so long as o doesn’t change between the calls

– Consistent with equality:
a.equals(b)Þ a.hashCode() == b.hashCode()

Think of it as a pre-filter

• If two objects are equal, they must have the same hash code
– Up to implementers of equals and hashCode to satisfy this
– If you override equals, you must override hashCode

• If two objects have the same hash code, they may or may not be
equal
– “Usually not” leads to better performance
– hashCode in Object tries to (but may not) give every object

a different hash code

• Hash codes are usually cheap[er] to compute, so check first if
you “usually expect not equal” – a pre-filter

Asides

• Hash codes are used for hash tables
– A common collection implementation
– See CSE332
– Libraries won’t work if your classes break relevant contracts

• Cheaper pre-filtering is a more general idea
– Example: Are two large video files the exact same video?

• Quick pre-filter: Are the files the same size?

Doing it

• So: we have to override hashCode in Duration
– Must obey contract
– Aim for non-equals objects usually having different results

• Correct but expect poor performance:
public int hashCode() { return 1; }

• Correct but expect better-but-still-possibly-poor performance:
public int hashCode() { return min; }

• Better:
public int hashCode() { return min ^ sec; }

Correctness depends on equals

Suppose we change the spec for Duration’s equals:
// true if o and this represent same # of seconds
public boolean equals(Object o) {

if (! (o instanceof Duration))
return false;

Duration d = (Duration) o;
return 60*min+sec == 60*d.min+d.sec;

}

Must update hashCode – why?
– This works:

public int hashCode() {
return 60*min+sec;

}

Equality, mutation, and time

If two objects are equal now, will they always be equal?
– In mathematics, “yes”
– In Java, “you choose”
– Object contract doesn't specify

For immutable objects:
– Abstract value never changes
– Equality should be forever (even if rep changes)

For mutable objects, either:
– Stick with reference equality
– “No” equality is not forever

• Mutation changes abstract value, hence what-object-equals

Examples
StringBuffer is mutable and sticks with reference-equality:
StringBuffer s1 = new StringBuffer("hello");

StringBuffer s2 = new StringBuffer("hello");

s1.equals(s1); // true

s1.equals(s2); // false

By contrast:

Date d1 = new Date(0); // Jan 1, 1970 00:00:00 GMT

Date d2 = new Date(0);

d1.equals(d2); // true
d2.setTime(1);
d1.equals(d2); // false

Behavioral and observational equivalence

Two objects are “behaviorally equivalent” if there is no sequence of
operations (excluding ==) that can distinguish them

– they look the same forever
– might live at different addresses

Two objects are “observationally equivalent” if there is no sequence
of observer operations that can distinguish them

– Excludes mutators (and ==)
– they look the same now, but might look different later

Equality and mutation

Set class checks equality only upon insertion

Can therefore violate rep invariant of a Set by mutating after
insertion

Set<Date> s = new HashSet<Date>();
Date d1 = new Date(0);
Date d2 = new Date(1000);
s.add(d1);
s.add(d2);
d2.setTime(0);
for (Date d : s) { // prints two of same date

System.out.println(d);
}

Pitfalls of mutability and collections

From the spec of Set:
“Note: Great care must be exercised if mutable objects are used
as set elements. The behavior of a set is not specified if the value
of an object is changed in a manner that affects equals
comparisons while the object is an element in the set.”

Same problem applies to keys in maps

Same problem applies to mutations that change hash codes when
using HashSet or HashMap

(Libraries choose not to copy-in for performance and to preserve
object identity)

Another container wrinkle: self-containment

equals and hashCode on containers are recursive:
class ArrayList<E> {

public int hashCode() {
int code = 1;
for (Object o : list)

code = 31*code + (o==null ? 0 : o.hashCode())
return code;

}

This causes an infinite loop:
List<Object> lst = new ArrayList<Object>();
lst.add(lst);
lst.hashCode();

From the List documentation: Note: While it is permissible for lists to
contain themselves as elements, extreme caution is advised: the equals
and hashCode methods are no longer well defined on such a list.

Summary: Equals and Collections
• Reference equality (strongest)

– a and b are the same iff they live at the same address
• Behavioral equality (weaker than Reference equality)

– if a and b are the same now, they will be the same after any sequence
of method calls (immutable objects)

• Observational equality (weaker than Behavioral equality)
– if a and b are the same now, they might be different after mutator

methods are called (mutable objects)

• Java’s equals has an elaborate specification, but does not require any of
the above notions
– Also requires consistency with hashCode
– Concepts more general than Java

• Mutation and/or subtyping make things even less satisfying
– Good reason not to overuse/misuse either

