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Announcements

Announcements

• Reading 4 posted
– Quiz due Thursday 7/12, 10 pm

• HW4 due Thursday 7/12, 10 pm
• HW2 feedback out soon

• Midterm Monday 7/16 in class
• Midterm Review Friday 7/13, 3:30 – 5pm, in lecture classroom

Introduction



Style

“Use the active voice.”
“Omit needless words.”

“Don't patch bad code - rewrite it.”
“Make sure your code 'does nothing' gracefully.”

No one right answer

• Style is an art as much as a science

• Somewhat subjective rules
– developed over combined coding experience of many 

programmers

• Every program is a special snowflake

• When you encounter design principles in real life coding 
experiences, challenge them! (if you have time)

Outline
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Modules

A module is a relatively general term for a class or a type or any 
kind of design unit in software

A modular design focuses on what modules are defined, what their 
specifications are, how they relate to each other

– Not the implementations of the modules
– Each module respects other modules’ abstraction barriers!



Ideals of modular software

Decomposable – can be broken down into modules 
to reduce complexity and allow teamwork

Composable – “Having divided to conquer, we must 
reunite to rule [M. Jackson].”

Understandable – one module can be examined, 
reasoned about, developed, etc. in isolation

Continuity – a small change in the requirements 
should affect a small number of modules

Isolation – an error in one module should be as 
contained as possible

Cohesion and
Coupling

Two general design issues

Cohesion – how well components fit together to form something 
that is self-contained, independent, and with a single, well-defined 
purpose

Coupling – how much dependency there is between components

Guideline: decrease coupling, increase cohesion

Applies to modules and smaller units
– Each method should do one thing, and do it well
– Each module should provide a single abstraction

Cohesion

The common design objective of separation of concerns suggests a 
module should represent a single concept 

– A common kind of “concept” is an ADT

Encapsulation (Data Hiding) – Enclosing the concrete 
representation of data in an object so it is inaccessible to clients

If a module implements more than one abstraction, consider 
breaking it into separate modules for each one



Coupling
How are modules dependent on one another?

– Statically (in the code)?  Dynamically (at run-time)?  More?
– Ideally, split design into parts that don't interact much

Roughly, the more coupled modules are, the more they need to be 
reasoned about as though they are a single, larger module

An application

MY
FINAL

PROJECT

A poor decomposition
(parts strongly coupled)

MY

FINAL PROJECT

A better decomposition
(parts weakly coupled)

MY

PRINAL FOJECT

Coupling is the path to the dark side

Coupling leads to complexity

Complexity leads to confusion

Confusion leads to suffering

Once you start down the dark 
path, forever will it dominate 
your destiny, consume you it will

God classes

god class: a class that hoards much of the data or functionality of a 
system

– Poor cohesion – little thought about why all the elements are 
placed together

– Reduces coupling but only by collapsing multiple modules 
into one (which replaces dependences between modules 
with dependences within a module)

A god class is an example of an anti-pattern: a known bad way of 
doing things

Cohesion again…

Methods should do one thing well:
– Compute a value but let client decide what to do with it
– Observe or mutate, don’t do both
– Don’t print as a side effect of some other operation

Don’t limit future possible uses of the method by having it do 
multiple, not-necessarily-related things

“Flag” variables are often a symptom of poor method cohesion



Cohesive?
Making all the components highly reliable 
will not necessarily make the system safe.

― Nancy G. Leveson
Engineering a Safer World:
Systems Thinking Applied to Safety

Summary

• Each unit should do one thing and do it well
– If one unit does multiple things, it should be split up

• Units should interact with each other via a minimal interface
– Minimize each module’s knowledge of other modules

• Large modules rely on smaller modules working together well
– It’s not sufficient for each small unit to work well on its own
– Must fit together to form an elegant whole

More Stuff



Method design
Effective Java (EJ) Tip #40 [51]: Design method signatures carefully

– Avoid long parameter lists
– Perlis: “If you have a procedure with ten parameters, you probably 

missed some.”
– Especially error-prone if parameters are all the same type
– Avoid methods that take lots of Boolean “flag” parameters

Which of these has a bug?
– memset(ptr, size, 0);
– memset(ptr, 0, size);

EJ Tip #41 [52]: Use overloading judiciously
Can be useful, but avoid overloading with same number of 
parameters, and think about whether methods really are related

Field design

A variable should be made into a field if and only if:
– It is part of the inherent internal state of the object
– It has a value that retains meaning throughout the object's life
– Its state must persist past the end of any one public method

All other variables should be local to the methods in which they 
are used

– Fields should not be used to avoid parameter passing
– Not every constructor parameter needs to be a field

Exception to the rule: Certain cases where overriding is needed
– Example: Thread.run

Constructor design

Constructors should have all the arguments necessary to initialize the 
object's state – no more, no less

Object should be completely initialized after constructor is done
(i.e., the rep invariant should hold)

Shouldn't need to call other methods to “finish” initialization

Naming



Any true wizard knows, once you know 
the name of a thing you can control it.

-- Jerry Sussman

Class and method naming
EJ Tip #56 [68]: Adhere to generally accepted naming conventions
• Class names: generally nouns 

– Beware "verb + er" names, e.g. Manager, Scheduler, 
ShapeDisplayer

• Interface names often –able/-ible adjectives:
Iterable, Comparable, …

• Method names: noun or verb phrases 
– Nouns for observers: size, totalSales
– Verbs+noun for observers: getX, isX, hasX
– Verbs for mutators: move, append
– Verbs+noun for mutators: setX
– Choose affirmative, positive names over negative ones

isSafe not isUnsafe
isEmpty not hasNoElements

Local variable naming

count, flag, status, compute, check, value, 
pointer, names starting with my…

– Convey no useful information

Describe what is being counted, what the “flag” indicates, etc.
numberOfStudents, isCourseFull, 
calculatePayroll, validateWebForm, …

But short names in local contexts are good:
Good: for(i = 0; i < size; i++) items[i]=0;
Bad:   for(theLoopCounter =  0; 

theLoopCounter < theCollectionSize;
theLoopCounter++) 

theCollectionItems[theLoopCounter]=0;

Class Design



Class design ideals

Cohesion and coupling, already discussed

Completeness: Every class should present a complete interface

Consistency: In names, param/returns, ordering, and behavior

Completeness

Include important methods to make a class easy to use
Counterexamples: 

• A mutable collection with add but no remove
• A tool object with a setHighlighted method to select 

it, but no setUnhighlighted method to deselect it
• Date class with no date-arithmetic operations

Also:
– Objects that have a natural ordering should implement 
Comparable

– Objects that might have duplicates should implement 
equals (and therefore hashCode)

– Most objects should implement toString

But…

Don’t include everything you can possibly think of
– If you include it, you’re stuck with it forever (even if almost 

nobody ever uses it)

Tricky balancing act: include what’s useful, but don’t make things 
overly complicated

– You can always add it later if you really need it

“Everything should be made as simple 
as possible, but not simpler.”

- Einstein

Consistency
A class or interface should have consistent names, 
parameters/returns, ordering, and behavior

Use similar naming; accept parameters in the same order
Counterexamples:

setFirst(int index, String value)
setLast(String value, int index) 

Date/GregorianCalendar use 0-based months

String methods: equalsIgnoreCase, 
compareToIgnoreCase;

but regionMatches(boolean ignoreCase)

String.length(), array.length, collection.size() 



Open-Closed Principle

Software entities should be open for extension, but closed for 
modification

– When features are added to your system, do so by adding 
new classes or reusing existing ones in new ways

– If possible, don't make changes by modifying existing ones –
existing code works and changing it can introduce bugs and 
errors.

Related: Code to interfaces, not to classes
Example: accept a List parameter, not ArrayList or 
LinkedList
EJ Tip #52: Refer to objects by their interfaces

Documenting a class
Keep internal and external documentation separate

External: /** ... */ Javadoc for classes, interfaces, methods
– Specifications only!
– Describes things that clients need to know about the class
– Should be specific enough to exclude unacceptable 

implementations, but general enough to allow for all correct 
implementations

– Includes all pre/postconditons, etc.

Internal: // comments inside class and method bodies
– Describes details of how the code is implemented
– Information that clients wouldn't and shouldn't need, but a fellow 

developer working on this class would want – invariants and 
internal pre/post conditions especially

– Includes Abstraction Function and Rep Invariant

Internal Documentation

• Comments should provide additional information from the code 
itself. They should not echo the code.
– Don’t comment every line saying what that line does

• Comments should summarize blocks of code
– Like headers and subheaders in a textbook
– Makes it easier to skim the code

• Documentation should match the code – keep them in sync!

• It’s better to write clear, understandable code than to write a ton of 
comments on messy, hard-to-understand code. 

• Good code is sometimes self-explanatory and therefore needs 
fewer comments than bad code.

Enums help document

Consider use of enums, even with only two values – which of the 
following is better?

oven.setTemp(97, true); 
oven.setTemp(97, Temperature.CELSIUS);



More Stuff

Choosing types – some hints

Numbers: Favor int and long for most numeric computations

EJ Tip #48: Avoid float and double if exact answers are 
required

Classic example: Money  (round-off is bad here)

Strings are often overused since much data is read as text

Independence of views

• Confine user interaction to a core set of “view” classes and 
isolate these from the classes that maintain the key system data

• Do not put print statements in your core classes
– This locks your code into a text representation
– Makes it less useful if the client wants a GUI, a web app, etc.

• Instead, have your core classes return data that can be 
displayed by the view classes
– Which of the following is better?

public void printMyself()
public String toString()

Last thoughts (for now)
• Always remember your reader

– Who are they?
• Clients of your code
• Other programmers working with the code 

– (including yourself in 3 weeks/months/years)
– What do they need to know?

• How to use it (clients)
• How it works, but more important, why it was done this 

way (implementers)
• Read/reread style and design advice regularly
• Keep practicing – mastery takes time and experience
• You’ll always be learning. Keep looking for better ways to do 

things!



Large-scale engineered systems are more than just a 
collection of technological artifacts: They are a reflection 
of the structure, management, procedures, and culture 
of the engineering organization that created them. They 
are usually also a reflection of the society in which they 
were created.

― Nancy G. Leveson
Engineering a Safer World:
Systems Thinking Applied to Safety

Closing

Announcements (recap)

• Reading 4 posted
– Quiz due Thursday 7/12, 10 pm

• HW4 due Thursday 7/12, 10 pm
• HW2 feedback out soon

• Midterm Monday 7/16 in class
• Midterm Review Friday 7/13, 3:30 – 5pm, in lecture classroom

• Thank you for coming to class!


