CSE 331

Software Design and Implementation

Lecture 7
Abstraction Functions

Leah Perlmutter / Summer 2018

Announcements

Announcements

HW?2 due tonight 10 pm

Wednesday, July 4 is Independence Day
— No lecture

Section Thursday, July 5

HW3 due Thursday, July 5 at 10 pm
— Seek HW3 help on Tuesday; no office hours Wednesday!

Reading 3 posted on website
— Quiz 3 (coming soon!) due Thursday, July 5 at 10 pm

Motivation

Review

Method Abstract
lecO4 lec05
? Specification F Data Type
(abstraction) (abstraction)

Method Body Data Structure
(concrete code) (concrete code)

Example: CharSet Abstraction

// Overview: A CharSet is a finite mutable set of Characters

// Qeffects: creates a fresh, empty CharSet
public CharSet() {..}

set —see Wolfram
Alpha definition

// @modifies: this
// Reffects: this_,. = this_ . + {c} ~
public void insert (Character c¢) {..}

set union

// @modifies: this

// Qeffects: this . = this,, . - {c}
. . :|J t difference
public void delete (Character c) {..} S€

// @return: (c € this)
public boolean member (Character c) {..}

// Qreturn: cardinality of this
public int size() {..}

Informal notation warning

Charset Representation Invariant

class CharSet {
// Rep invariant:
// this.elts has no nulls and no duplicates

private List<Character> elts = ..

Rep inv. constrains structure, not meaning

An implementation of insert that preserves the rep invariant:
public void insert (Character c) {
Character cc = new Character (encrypt(c))
if ('elts.contains(cc))

elts.addElement (cc) ; CharSet s = new CharSet() ;

s.insert('a');
if (s.member('a'))

}
public boolean member (Chas

return elts.contains(c) .
}
Program is wrong
— Clients observe incorrect behavior
— What client code exposes the error?
— Where is the error?
— We must consider the meaning
— The abstraction function helps us

An ADT has an abstract value

Abstract Value: An Int List is a finite sequence of integer values

size: 4

size: 3

size: O

head ?

head ?

head

v

Integer (1)

v

Integer (1)

}

!

!

null

v

v

!

Integer (2)

Integer (2)

v

!

!

Integer (2)

v

v

!

Integer (42)

Integer (42)

v

!

!

Integer (42)

v

v

!

Integer (17)

Integer (17)

v

null

null

Integer (17)

L,2,42,17

s

-

’’’’’

Connecting implementations to specs

Representation Invariant. maps Object — boolean ﬁ lec06
— Indicates if an instance is well-formed
— Defines the set of valid concrete values

— Only values in the valid set make sense as implementations of an
abstract value

— For implementors/debuggers/maintainers of the abstraction:
no object should ever violate the rep invariant

« Such an object has no useful meaning

Abstraction Function: maps Object — abstract value lecO7
— What the data structure means as an abstract value (today)

— How the data structure is to be interpreted
— Only defined on objects meeting the rep invariant

— For implementors/debuggers/maintainers of the abstraction:
Each procedure should meet its spec (abstract values) by “doing
the right thing” with the concrete representation

Functions

Set

« An unordered collection of objects
S = {3, 1, 2, mouse}

* An object can be in the set or not € = “elelment of”
3 €S -1 € S
- Set builder notation
T = {x | x € S and x 1is an integer}
= {2, 1, 3] | = “such that”
- Some familiar sets
Z={...-1, 0, 1, 2, ...} “heintegers”

Q = {p/q | p, 9 €7 } “the rational numbers”

Function

« A relation that uniquely associates members of
one set with members of another set [Wolfram]

F : S=2>Y “Fmaps Sto Y”

Domain Codomain

MOuUSEe » animal
vegetable
2 o— mineral
umber

Range: {animal, number}

F(x) 2

X

Example Function

200

F : R=2>R

F(x) = x?

100 ¢

-20 -10 10 20

passes vertical line test

Example NOT Function

Inverse of F(x) = x@
y = * sqrt(x)

-20 20 40 60 80 100

Does not pass vertical line test — Not a function!

. sgrt (25) =
sgrt (25) =

Functions in Math and Programming

In programming, the term “function” is often loosely used
Related to the concepts of “method” and “subroutine”

float square(float x) {
return x * x;

}
This method implements a mathematical function

void greet(String name) {
System.out.println("Hello, " + name);

}
This method does not implement a mathematical function

Abstraction
Functions

Abstraction Function

The abstraction function maps concrete representations to the
abstract values they represent

AF: concrete rep — abstract value

AF(CharSet this) = { ¢ | c is contained in this.elts }
“set of Characters contained in this.elts”

— The abstraction function lets us reason about what [concrete]
methods do in terms of the clients’ [abstract] view

« Makes sure that all methods use the rep in the same way
— Math concept of function, not programming concept of function
* AF not implementable in code since range is abstract values

Abstraction Function

Values allowed by
the Data Structure —
all concrete values

Well Formed Values —
concrete values

that have a corresponding
abstrac‘c value

Rep Invariant Holds

Abstraction Function

Codomain
All concrete All Abstract
values Values

/.k\\ Range
Domain \ 9
o Concretely
Well Representable
Formed Abstract
concrete Velfrees
values

>

Abstraction Function

size: 4

All concrete
values

head

?

v

Codomain

Integer (1)

!

v
Integer (2) Domain \\

?

¥ Well ®
Integer (42) Formed

? concrete

v values
Integer (17)

All Abstract
Values

Range

Concretely

Representable

Abstract
Values

null

1,2, 42,17

>

Abstraction Function

size: 0 Codomain
head o All concrete All Abstract
v values
a1l Values
!
! /k
Integer (2) . [— Range
: Domain \ c |
oncretely
[
Integet 2 e Well Representable
Formed Abstract
i concrete Values
values
Integer (17)

>

!

Abstraction Function

Codomain
All VC;)IEZFSG’EG All Abstract
O, Values
1, /k
210,000 S — \ —~—— Range
Concretely
@
- Well . Representable
Ormet Abstract
“values vales

>

Summary so far:

The abstraction function maps concrete representations to
the abstract values they represent

AF: concrete rep — abstract value

Concretely
Well Representable

Formed Abstract
concrete Values

values

>

The abstraction function is a function

Why do we map concrete to abstract and not vice versa?

* |t's not a function in the other direction

— Example: lists [a,b] and [b,a] might each represent the
set {a, b}

* |t's not as useful in the other direction

— Purpose is to reason about whether our methods are
manipulating concrete representations correctly in terms of
the abstract specifications

Writing an abstraction function

Domain: all representations that satisfy the rep invariant
Range: concretely representable abstract values

Overview section of the specification should provide a notation of
writing abstract values

— Could implement a method for printing in this notation
» Useful for debugging
« Often a good choice for toString

Abstraction Function and Stack

/** A last-in, first-out stack. A typical stack is
e0, el, ... en

where en is the top element of the stack and is most

recently pushed and first available to be popped. */

public class Stack ({
// Rep invariant:
// 0 <= this.top <= this.a.length
// this.a '= null
// Abstraction Function:
// AF(this) = A last-in, first-out stack
// defined by an ordered sequence of integers
// this.a[0] ... this.a[this.top-1]
// where the rightmost integer in the
// sequence is at the top of the stack

private int[] a; _ o
implicit: the number of

private int top; : :
elements in the stack is top

} implicit: top points to the array element
just “after” the top of the stack

recall: top points to the array

StaCk AF exam ple element just after the top of the stack

new) | 0 | 0 | 0 pop) | 17 | -9 | 0
empty stack 7

“n Abstract states are the same
7 =17
4

Concrete states are different
<[17,0,0], top=1>
#*
<[17,-9,0], top=1>

pushis) | 17 | 9 | 0
]7 ’ "'9

AF is a function
Inverse of AF is not a function

Benevolent side effects @—

Different implementation of member:
boolean member (Character cl) {
int 1 = elts.index0Of(cl) ;

if (i == -1)

return false; e
// move-to-front optimization
Character c2 = elts.elementAt (0); AF AF
elts.set (0, cl);
elts.set (i, c2); o

’ P

return true; ° = G

* Move-to-front speeds up repeated membership tests
« Mutates rep, but does not change abstract value

— AF maps both reps to the same abstract value
* Precise reasoning/explanation for “clients can't tell”

Abstract and Concrete operations

Abstract Object

%

.
<

Concrete
Object

Abstract Opera%

Abstract
Object’

7 N

(.

<

Concrete Oper%

Concrete
Object’

Abstraction Function and Charset

The AF tells us what the rep means...

public void insert (Character c) {
Character cc = new Character (encrypt(c))
if ('elts.contains(cc))
elts.addElement (cc) ;

ﬁ AF(this) = { c | encrypt(c) is contained in this.elts }

public boolean member (Character c) {
return elts.contains(c) ;

} ~

AF(this) = { c | c is contained in this.elts }

The two methods assume different abstraction functions! BAD!!!

Charset Abstraction Function

class CharSet {
// Rep invariant:
// this.elts has no nulls and no duplicates
// Abstraction Function:
// AF(this) = { ¢ | ¢ is contained in this.elts }
private List<Character> elts = ..

- Defined in terms of the representation (this.elts)
 Internal comment (not javadoc)
— located just inside of the class definition at the very beginning

- Now we can re-implement insert to respect the AF

Data Abstraction: Summary

. 1 (>

>

Representation Invariant describes what makes the concrete
representation valid (green area)

Abstraction Function maps valid concrete values to abstract
values

— Neither one is part of the ADT’s specification
— Both are needed to reason an implementation satisfies the
specification

Closing

Closing Announcements

HW?2 due tonight 10 pm
HW3 due Thursday, July 5 at 10 pm
Quiz 3 (coming soon!) due Thursday, July 5 at 10 pm

Happy Independence Day!

