
Leah Perlmutter / Summer 2018

CSE 331
Software Design and Implementation

Lecture 7
Abstraction Functions

Announcements

Announcements
• HW2 due tonight 10 pm

• Wednesday, July 4 is Independence Day
– No lecture

• Section Thursday, July 5

• HW3 due Thursday, July 5 at 10 pm
– Seek HW3 help on Tuesday; no office hours Wednesday!

• Reading 3 posted on website
– Quiz 3 (coming soon!) due Thursday, July 5 at 10 pm

Motivation

Review

Method Body
(concrete code)

Method
Specification
(abstraction)

IM
PL
EM
EN
TS

Data Structure
(concrete code)

Abstract
Data Type
(abstraction)

IM
PL
EM
EN
TS

lec04 lec05

Example: CharSet Abstraction

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a fresh, empty CharSet
public CharSet() {…}

// @modifies: this
// @effects: thispost = thispre + {c}
public void insert(Character c) {…}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(Character c) {…}

// @return: (c Î this)
public boolean member(Character c) {…}

// @return: cardinality of this
public int size() {…}

Informal notation warning

set – see Wolfram
Alpha definition

set union

set difference

Charset Representation Invariant

class CharSet {
// Rep invariant:
// this.elts has no nulls and no duplicates
private List<Character> elts = …
…

}

Rep inv. constrains structure, not meaning

An implementation of insert that preserves the rep invariant:
public void insert(Character c) {

Character cc = new Character(encrypt(c));
if (!elts.contains(cc))

elts.addElement(cc);
}
public boolean member(Character c) {

return elts.contains(c);
}

Program is wrong
– Clients observe incorrect behavior
– What client code exposes the error?
– Where is the error?
– We must consider the meaning
– The abstraction function helps us

CharSet s = new CharSet();
s.insert('a');
if (s.member('a'))

…

An ADT has an abstract value

Integer(1)

Integer(2)

Integer(42)

Integer(17)
null

size: 4

head

1, 2, 42, 17

Integer(1)

Integer(2)

Integer(42)

Integer(17)
null

size: 3

head

?

null

Integer(2)

Integer(42)

Integer(17)

size: 0

head

?????

Abstract Value: An Int List is a finite sequence of integer values

Connecting implementations to specs

Representation Invariant: maps Object → boolean

– Indicates if an instance is well-formed
– Defines the set of valid concrete values

– Only values in the valid set make sense as implementations of an

abstract value

– For implementors/debuggers/maintainers of the abstraction:
no object should ever violate the rep invariant

• Such an object has no useful meaning

Abstraction Function: maps Object → abstract value

– What the data structure means as an abstract value

– How the data structure is to be interpreted

– Only defined on objects meeting the rep invariant

– For implementors/debuggers/maintainers of the abstraction:
Each procedure should meet its spec (abstract values) by “doing

the right thing” with the concrete representation

lec06

lec07

(today)

Functions

Set

• An unordered collection of objects
S = {3, 1, 2, mouse}

• An object can be in the set or not
3 ∈ S -1 ∉ S

• Set builder notation
T = {x | x ∈ S and x is an integer}
= {2, 1, 3}

• Some familiar sets
= {...-1, 0, 1, 2, ...} “the integers”

ℚ = {p/q | p, q ∈ } “the rational numbers”

∈ = “elelment of”

| = “such that”

Function

• A relation that uniquely associates members of
one set with members of another set [Wolfram]
F : S à Y “F maps S to Y”

Domain Codomain

Range: {animal, number}

mouse
1
2
3

animal
vegetable
mineral
number

F : à
F(x) = x2

Example Function

...
-2
0
1
2

2.5
...

4
0
1

6.25
...

passes vertical line test

F(x) = x2

Example NOT Function

Does not pass vertical line test – Not a function!

Inverse of F(x) = x2

y = ± sqrt(x)

sqrt(25) = 5
sqrt(25) = -5

Functions in Math and Programming

• In programming, the term “function” is often loosely used
• Related to the concepts of “method” and “subroutine”

float square(float x) {
return x * x;

}
This method implements a mathematical function

void greet(String name) {
System.out.println("Hello, " + name);

}
This method does not implement a mathematical function

Abstraction
Functions

Abstraction Function

The abstraction function maps concrete representations to the
abstract values they represent

AF: concrete rep → abstract value

AF(CharSet this) = { c | c is contained in this.elts }
“set of Characters contained in this.elts”

– The abstraction function lets us reason about what [concrete]
methods do in terms of the clients’ [abstract] view
• Makes sure that all methods use the rep in the same way

– Math concept of function, not programming concept of function
• AF not implementable in code since range is abstract values

Abstraction Function

Values allowed by
the Data Structure –

all concrete values

Well Formed Values –
concrete values

that have a corresponding
abstract value

Rep Invariant Holds

Abstraction Function

All concrete
values

Well
Formed
concrete
values

All Abstract
Values

Domain
Concretely

Representable
Abstract
Values

Range

Codomain

Abstraction Function

All concrete
values

Well
Formed
concrete
values

Integer(1)

Integer(2)

Integer(42)

Integer(17)
null

size: 4

head

1, 2, 42, 17

All Abstract
Values

Domain
Concretely

Representable
Abstract
Values

Range

Codomain

Abstraction Function

All concrete
values

Well
Formed
concrete
values

All Abstract
Values

Domain
Concretely

Representable
Abstract
Values

Range

Codomain

null

Integer(2)

Integer(42)

Integer(17)

size: 0

head

Abstraction Function

All concrete
values

Well
Formed
concrete
values

All Abstract
Values

Domain
Concretely

Representable
Abstract
Values

Range

Codomain

0,
1,
210,000

Summary so far:

Well
Formed
concrete
values

Concretely
Representable

Abstract
Values

The abstraction function maps concrete representations to
the abstract values they represent

AF: concrete rep → abstract value

The abstraction function is a function

Why do we map concrete to abstract and not vice versa?

• It’s not a function in the other direction
– Example: lists [a,b] and [b,a] might each represent the

set {a, b}

• It’s not as useful in the other direction
– Purpose is to reason about whether our methods are

manipulating concrete representations correctly in terms of
the abstract specifications

Writing an abstraction function

Domain: all representations that satisfy the rep invariant
Range: concretely representable abstract values

Overview section of the specification should provide a notation of
writing abstract values

– Could implement a method for printing in this notation
• Useful for debugging
• Often a good choice for toString

Abstraction Function and Stack
/** A last-in, first-out stack. A typical stack is

e0, e1, ... en
where en is the top element of the stack and is most
recently pushed and first available to be popped. */
public class Stack {
// Rep invariant:
// 0 <= this.top <= this.a.length
// this.a != null
// Abstraction Function:
// AF(this) = A last-in, first-out stack
// defined by an ordered sequence of integers
// this.a[0] ... this.a[this.top-1]
// where the rightmost integer in the
// sequence is at the top of the stack
private int[] a;
private int top;
...

}

implicit: the number of
elements in the stack is top

implicit: top points to the array element
just “after” the top of the stack

Stack AF example
recall: top points to the array

element just after the top of the stack

new() 0 0 0

push(17) 17 0 0

top=1

push(-9) 17 -9 0

top=2

top=0

empty stack

17

17, -9

pop() 17 -9 0

17

top=1

Abstract states are the same
17 = 17

Concrete states are different
<[17,0,0], top=1>

≠
<[17,-9,0], top=1>

AF is a function
Inverse of AF is not a function

Benevolent side effects
Different implementation of member:
boolean member(Character c1) {

int i = elts.indexOf(c1);
if (i == -1)
return false;

// move-to-front optimization
Character c2 = elts.elementAt(0);
elts.set(0, c1);
elts.set(i, c2);
return true;

}
• Move-to-front speeds up repeated membership tests
• Mutates rep, but does not change abstract value

– AF maps both reps to the same abstract value
• Precise reasoning/explanation for “clients can’t tell”

r r’

a

op
Þ

AF AF

conc
rete

abst
ract

Abstract and Concrete operations

Abstraction Function and Charset

The AF tells us what the rep means...

public void insert(Character c) {
Character cc = new Character(encrypt(c));
if (!elts.contains(cc))

elts.addElement(cc);
}

public boolean member(Character c) {
return elts.contains(c);

}

The two methods assume different abstraction functions! BAD!!!

AF(this) = { c | encrypt(c) is contained in this.elts }

AF(this) = { c | c is contained in this.elts }

Charset Abstraction Function

class CharSet {
// Rep invariant:
// this.elts has no nulls and no duplicates
// Abstraction Function:
// AF(this) = { c | c is contained in this.elts }
private List<Character> elts = …

…
}

• Defined in terms of the representation (this.elts)
• Internal comment (not javadoc)

– located just inside of the class definition at the very beginning

• Now we can re-implement insert to respect the AF

Data Abstraction: Summary

Representation Invariant describes what makes the concrete
representation valid (green area)
Abstraction Function maps valid concrete values to abstract
values

– Neither one is part of the ADT’s specification
– Both are needed to reason an implementation satisfies the

specification

Closing

Closing Announcements
• HW2 due tonight 10 pm
• HW3 due Thursday, July 5 at 10 pm
• Quiz 3 (coming soon!) due Thursday, July 5 at 10 pm

• Happy Independence Day!

