
Leah Perlmutter / Summer 2018

CSE 331
Software Design and Implementation

Lecture 5
Representation Invariants

Announcements

Announcements

• Happy Friday!
– My t-shirt

• Next week
– HW2 due Monday, July 4 at 10pm

• It’s harder than HW1
• Please take advantage of today’s office hours!

– July 4 holiday on Wednesday -- no class!
• TAs will announce OH changes

– HW3 due Thursday

Motivation

Review

Method Body
(concrete code)

Method
Specification
(abstraction)

IM
PL
EM
EN
TS

Data Structure
(concrete code)

Abstract
Data Type
(abstraction)

IM
PL
EM
EN
TS

lec04 lec05

An ADT is a specification

Abstract state + collection of procedural abstractions (aka method
specs)

– Not a collection of procedures

Together, these procedural abstractions provide some set of values
All the ways of directly using that set of values
– Creating
– Manipulating
– Observing

• Creators and producers: make new values
• Mutators: change the value
• Observers: allow one to distinguish different values

An ADT has an abstract value

Integer(1)

Integer(2)

Integer(42)

Integer(17)
null

size: 4

head

1, 2, 42, 17

Integer(1)

Integer(2)

Integer(42)

Integer(17)
null

size: 3

head

?

null

Integer(2)

Integer(42)

Integer(17)

size: 0

head

?????

Abstract Value: An Int List is a finite sequence of integer values

ADTs and specs
Values allowed by
the Data Structure
(concrete values)

Valid ADT Values
(abstract values)

- from
producers

- from value
in ADT + operation

ADTs and specifications

So far, we have only specified ADTs
– Specification makes no reference to the implementation

Of course, we need [guidelines for how] to implement ADTs
• Data Structure implements an ADT

Of course, we need [guidelines for how] to ensure our
implementations satisfy our specifications

Two intellectual tools are really helpful…

lec05

Connecting implementations to specs
Representation Invariant: maps Object → boolean

– Indicates if an instance is well-formed
– Defines the set of valid concrete values
– Only values in the valid set make sense as implementations of an

abstract value
– For implementors/debuggers/maintainers of the abstraction:

no object should ever violate the rep invariant
• Such an object has no useful meaning

Abstraction Function: maps Object → abstract value
– What the data structure means as an abstract value
– How the data structure is to be interpreted
– Only defined on objects meeting the rep invariant
– For implementors/debuggers/maintainers of the abstraction:

Each procedure should meet its spec (abstract values) by “doing
the right thing” with the concrete representation

lec06
(today)

lec07

Representation
Invariants

Implementing a Data Abstraction (ADT)

To implement a data abstraction:
– Select the representation of instances, “the rep”

• In Java, typically instances of some class you define
– Implement operations in terms of that rep

Choose a representation so that:
– It is possible to implement required operations
– The most frequently used operations are efficient

• But which will these be?
• Abstraction allows the rep to change later

Example: CharSet Abstraction

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a fresh, empty CharSet
public CharSet() {…}

// @modifies: this
// @effects: thispost = thispre + {c}
public void insert(Character c) {…}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(Character c) {…}

// @return: (c Î this)
public boolean member(Character c) {…}

// @return: cardinality of this
public int size() {…}

Informal notation warning

set – see Wolfram
Alpha definition

set union

set difference

An implementation: Is it right?
class CharSet {

private List<Character> elts =
new ArrayList<Character>();

public void insert(Character c) {
elts.add(c);

}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

the rep

Does this implementation prevent poorly formed values?

An implementation: Is it right?
class CharSet {

private List<Character> elts =
new ArrayList<Character>();

public void insert(Character c) {
elts.add(c);

}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();
Character a = new Character('a');
s.insert(a);
s.insert(a);
s.delete(a);
if (s.member(a))

System.out.print("wrong");
else

System.out.print("right");

An implementation: Is it right?
class CharSet {

private List<Character> elts =
new ArrayList<Character>();

public void insert(Character c) {
elts.add(c);

}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

Where is the error?

Where Is the Error?

If you can answer this, then you know what to fix

Perhaps delete is wrong
– Should remove all occurrences?

Perhaps insert is wrong
– Should not insert a character that is already there?

How can we know?
– The representation invariant tells us
– If it’s “our code”, this is how we document our choice for “the

right answer”

The representation invariant

• Defines data structure well-formedness
• Must hold before and after every CharSet operation
• Operations (methods) may depend on it
• Write it like this:

class CharSet {
// Rep invariant:
// this.elts has no nulls and no duplicates
private List<Character> elts = …
…

Or, more formally (if you prefer):
" indices i of this.elts , this.elts.elementAt(i) ≠ null
" indices i, j of this.elts ,

this.elts.elementAt(i).equals(this.elts.elementAt(j)) Þ i = j

" = ”for all”
Þ = logical implication

The representation invariant

class CharSet {
// Rep invariant:
// this.elts has no nulls and no duplicates
private List<Character> elts = …
…

}

• Written in terms of the representation (this.elts)
• Internal comment (not javadoc)

– located just inside of the class definition at the very beginning

The representation invariant

class CharSet {
// Rep Invariant:
// for all indices i of this.elts ,
// this.elts.elementAt(i) is not null
// for all indices i, j of this.elts ,
// this.elts.elementAt(i).
// equals(this.elts.elementAt(j))
// implies that i = j
private List<Character> elts = …

…
}
• Written in terms of the representation (this.elts)
• Internal comment (not javadoc)

– located just inside of the class definition at the very beginning

Now we can locate the error

// Rep invariant:
// elts has no nulls and no duplicates

public void insert(Character c) {
elts.add(c);

}

public void delete(Character c) {
elts.remove(c);

}

Another example

class Account {
private int balance;
// history of all transactions
private List<Transaction> transactions;
…

}

Real-world constraints:
• Balance ≥ 0
• Balance = Σi transactions.get(i).amount

Implementation-related constraints:
• Transactions ≠ null
• No nulls in transactions

Σi ... = the sum, over
all values of i, of ...

the repthe rep

Checking rep invariants

Should code check that the rep invariant holds?
– Short answer: YES!!!!

More considerations
– Development vs. Production

• Always yes in development [even when it’s expensive]
• Production... usually yes

– (See Pragmatic Programmer: Assertive Programming)
– computational cost [depends on the invariant]

• sometimes no for expensive checks, in production
– Some private methods need not check (Why?)

A great debugging technique:
Design your code to catch bugs early by implementing and

using rep-invariant checking

Checking the rep invariant
Rule of thumb: check on entry and on exit (why?)

/** Verify elts has no nulls or duplicates and... */
private void checkRep() {
for (int i = 0; i < elts.size(); i++) {
assert elts.elementAt(i) != null;
assert elts.indexOf(elts.elementAt(i)) == i;

}
... // more checks

}

public void delete(Character c) {
checkRep();
elts.remove(c);
// Is this guaranteed to get called?
// (could guarantee it with a finally block)
checkRep();

}

What does
assert mean?

Practice defensive programming

Assume that you will make mistakes

Write and incorporate code designed to catch them
– On entry:

• Check rep invariant
• Check preconditions

– On exit:
• Check rep invariant
• Check postconditions

Checking the rep invariant helps you discover errors

Reasoning about the rep invariant helps you avoid errors

Summary so far...
• We implement an Abstract Data Type with a Data Structure
• Every Data Structure has a Representation that is a concrete way

of representing an object’s abstract value

• The representation allows concrete values
that do not correspond to an abstract value

– “gray area” ---------------------------------à

• Representation Invariant describes what makes the concrete
representation valid (green area)

• checkRep() method verifies that the rep is valid, throws
exception if not, protects you from yourself

• Check your rep all the time!
– generally at beginning and end of every public method

Representation
Exposure

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts();

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the rep invariant?

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts();

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the rep invariant?
Kind of, sort of, not really….

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();
Character a = new Character(’a’);
s.insert(a);
s.getElts().add(a);
s.delete(a);
if (s.member(a)) …

Representation exposure is external access to the rep

Representation exposure is almost always evil

A big deal, a common bug, you now have a name for it!

If you do it, document why and how
– And feel guilty about it!

Avoiding representation exposure

Understand what representation exposure is

Design ADT implementations to make sure it doesn’t happen

Treat rep exposure as a bug: fix your bugs

Test for it with adversarial clients:
– Pass values to methods and then mutate them
– Mutate values returned from methods

private is not enough

Abstraction
Barrier

Client
code

The Rep

• Making fields private does not suffice to prevent rep exposure
– See our example

• So private is a hint to you: no aliases outside abstraction to
references to mutable data reachable from private fields

• Two general ways to avoid representation exposure…

Avoiding rep exposure (way #1)

One way to avoid rep exposure is to make copies of all data that
cross the abstraction barrier

– Copy in [parameters that become part of the implementation]
– Copy out [results that are part of the implementation]

Examples of copying (assume Point is a mutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = new Point(s.x,s.y);
this.e = new Point(e.x,e.y);

}
public Point getStart() {

return new Point(this.s.x,this.s.y);
}
…

copy in

copy out

Need deep copying

“Shallow” copying is not enough
– Prevent any aliasing to mutable data inside/outside abstraction

What’s the bug (assuming Point is a mutable ADT)?
class PointSet {

private List<Point> points = …
public List<Point> getElts() {

return new ArrayList<Point>(points);
}

}

Not in example: Also need deep copying on “copy in”

copy out?

Avoiding rep exposure (way #2)

One way to avoid rep exposure is to exploit the immutability of
(other) ADTs the implementation uses

– Aliasing is no problem if nobody can change data
• Have to mutate the rep to break the rep invariant

Examples (assuming Point is an immutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = s;
this.e = e;

}
public Point getStart() {

return this.s;
}
…

Why [not] immutability?

Several advantages of immutability
– Aliasing does not matter
– No need to make copies with identical contents
– Rep invariants cannot be broken
– Take CSE 341: Programming Languages for more!

Does require different designs (e.g., if Point immutable)
void raiseLine(double deltaY) {

this.s = new Point(s.x, s.y+deltaY);
this.e = new Point(e.x, e.y+deltaY);

}

Immutable classes in Java libraries include String, Character,
Integer, …

Deepness revisited

An immutable ADT must be immutable “all the way down”
– No references reachable to data that may be mutated

So combining our two ways to avoid rep exposure:
– Must copy-in, copy-out “all the way down” to immutable parts

Back to getElts

Recall our initial rep-exposure example:

class CharSet {
// Rep invariant: elts has no nulls and no dups
private List<Character> elts = …;

// returns: elts currently in the set
public List<Character> getElts() {

return new ArrayList<Character>(elts); }
…

}

copy out!

An alternative

// returns: elts currently in the set
public List<Character> getElts() { // version 1

return new ArrayList<Character>(elts);//copy out!
}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList<Character>(elts);

}

From the JavaDoc for Collections.unmodifiableList:
Returns an unmodifiable view of the specified list. This method allows
modules to provide users with "read-only" access to internal lists. Query
operations on the returned list "read through" to the specified list, and
attempts to modify the returned list… result in an
UnsupportedOperationException.

The good news

public List<Character> getElts() { // version 2
return Collections.unmodifiableList<Character>(elts);

}

Clients cannot modify (mutate) the rep
• So they cannot break the rep invariant

(For long lists,) more efficient than copy out

Uses standard libraries

Caveat

public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList<Character>(elts);

}
The two implementations do not do the same thing!

– Both avoid allowing clients to break the rep invariant
– Both return a list containing the elements

But consider: xs = s.getElts();
s.insert('a');
xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior

Different specifications
Ambiguous spec: “returns a list containing the current set elements”

1. “returns a fresh mutable list containing the elements in the set
at the time of the call”
versus
2. “returns read-only access to a list that the ADT
continues to update to hold the current elements in the set”

3. A third spec weaker than both [but less simple and useful!]
“returns a list containing the current set elements. Behavior is

unspecified (!) if client attempts to mutate the list or to access the list
after the set’s elements are changed”

Also note: Version 2’s spec also makes changing the rep later harder
– Only “simple” to implement with rep as a List

Summary
• A data structure’s representation allows concrete values

that do not correspond to an abstract value allowed by the ADT
– “gray area” -------à

• Representation Invariant describes what makes the concrete
representation valid (green area)

• checkRep() method verifies that the rep is valid

• Rep Exposure occurs when a client can modify the rep
– Never let this happen!!!!

Closing

Closing Announcements
• HW2 due Monday 10 pm

– Start early!
– Go to office hours today!

• Thank you for coming to class!

• Enjoy your weekend!

