
Leah Perlmutter / Summer 2018

CSE 331
Software Design and Implementation

Lecture 4
Specifications

Announcements

Announcements

• HW1 Due tonight
• Looking ahead: HW2 and HW3 both due next week
• Quiz2 to be posted tonight
• HW0 feedback out soon

• This lecture will help you do your homework!

Weaker/Stronger Statements

y = sum(1...n)
(n (n+1))/2

Question from last lecture...
Why is {sum = sum(1..n) }
stronger than {sum = sum(1..k-1) } ?

y = sum(1...k-1)

0 1 3 6 ...

k changes

n is a fixed value

((k-1)k)/2 for k = (1... n)

(n (n+1))/2 for a specific n

(n(n+1))/2

Formal Reasoning & Specs
• Last week we learned how to prove that

code is correct
• To have any notion of “correct”, we need a

specification!

Overview

q Motivation for Specifications
q Towards Writing a Specification
q Javadoc
q Comparing Specifications
q Closing

Motivation for
Specifications

2 Goals of Software System Building

• Building the right system
– Does the program meet the user’s needs?
– Determining this is usually called validation

• Building the system right
– Does the program meet the specification?
– Determining this is usually called verification

• CSE 331: the second goal is the focus – creating a correctly
functioning artifact
– Surprisingly hard to specify, design, implement, test, and

debug even simple programs

Looking Forward

• We’ve started to see how to reason about code
• We’ll build on those skills in many places:

– Specification: What are we supposed to build?
– Design: How do we decompose the job into manageable

pieces? Which designs are “better”?
– Implementation: Building code that meets the specification
– Testing: Systematically finding problems
– Debugging: Systematically fixing problems
– Maintenance: How does the artifact adapt over time?
– Documentation: What do we need to know to do these

things? How/where do we write that down?

The challenge of scaling software

Flexibility

Size

The challenge of scaling software

• Small programs are simple and malleable
– Easy to write
– Easy to change

• Big programs are (often) complex and inflexible
– Hard to write
– Hard to change

• Why does this happen?
– Because interactions become unmanageable

• How do we keep things simple and malleable?

A discipline of modularity

• Two ways to view a program:
– The implementer's view (how to build it)
– The client's view (how to use it)

• It helps to apply these views to program parts:
– While implementing one part, consider yourself a client of

any other parts it depends on
– Try not to look at those other parts through an implementer's

eyes
– Helps dampen interactions between parts

• Formalized through the idea of a specification

A specification is a contract

• A set of requirements agreed to by the user and the
manufacturer of the product
– Describes their expectations of each other

• Facilitates simplicity via two-way isolation
– Isolate client from implementation details
– Isolate implementer from how the part is used
– Discourages implicit, unwritten expectations

• Facilitates change
– Reduces the “Medusa effect”: the specification, rather

than the code, gets “turned to stone” by client
dependencies

Isn’t the interface sufficient?
The interface defines the boundary between implementers and users:

public class List<E> {
public E get(int x) { return null; }
public void set(int x, E y){}
public void add(E) {}
public void add(int, E){}
…
public static <T> boolean isSub(List<T>, List<T>){

return false;
}

}

Interface provides the syntax and types
But nothing about the behavior and effects
– Provides too little information to clients

Note: Code above is right concept but is not (completely) legal Java
– Parameters need names; no static interface methods before Java 8

Why not just read code?
static <T> boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

Why are you better off with a specification?

Code is complicated

• Code gives more detail than needed by client

• Understanding or even reading every line of code is an
excessive burden
– Suppose you had to read source code of Java libraries to

use them
– Same applies to developers of different parts of the libraries

• Client cares only about what the code does, not how it does it

Code is ambiguous

• Code seems unambiguous and concrete
– But which details of code's behavior are essential, and which

are incidental?

• Code invariably gets rewritten
– Client needs to know what they can rely on

• What properties will be maintained over time?
• What properties might be changed by future optimization,

improved algorithms, or bug fixes?
– Implementer needs to know what features the client depends

on, and which can be changed

Overview

q Motivation for Specifications
q Towards Writing a Specification
q Javadoc
q Comparing Specifications
q Closing

Towards Writing
A Specification

Comments are essential

Most comments convey only an informal, general idea of what that the
code does:

// This method checks if "part" appears as a
// sub-sequence in "src"
static <T> boolean sub(List<T> src, List<T> part){

...
}

Problem: ambiguity remains
– What if src and part are both empty lists?
– When does the function return true?

From vague comments to specifications

• Roles of a specification:
– Client agrees to rely only on information in the description in

their use of the part
– Implementer of the part promises to support everything in

the description
• Otherwise is perfectly at liberty

• Sadly, much code lacks a specification
– Clients often work out what a method/class does in

ambiguous cases by running it and depending on the results
– Leads to bugs and programs with unclear dependencies,

reducing simplicity and flexibility

Recall the sublist example
static <T> boolean sub(List<T> src, List<T> part) {

int part_index = 0;
for (T elt : src) {

if (elt.equals(part.get(part_index))) {
part_index++;
if (part_index == part.size()) {

return true;
}

} else {
part_index = 0;

}
}
return false;

}

A more careful description of sub
// Check whether “part” appears as a sub-sequence in “src”

needs to be given some caveats (why?):
// * src and part cannot be null

// * If src is empty list, always returns false

// * Results may be unexpected if partial matches

// can happen right before a real match; e.g.,

// list (1,2,1,3) will not be identified as a
// sub sequence of (1,2,1,2,1,3).

or replaced with a more detailed description:
// This method scans the “src” list from beginning

// to end, building up a match for “part”, and

// resetting that match every time that...

A better approach

It’s better to simplify than to describe complexity!

Complicated description suggests poor design
– Rewrite sub to be more sensible, and easier to describe

// returns true iff

// src = A : part : B

// where A, B are (possibly empty) sequences

// and “:” is sequence concatenation

static <T> boolean sub(List<T> src, List<T> part) {

• Mathematical flavor not always necessary, but often helps avoid
ambiguity

• “Declarative” style is important: avoids reciting or depending on
operational/implementation details

iff = “if and only if”

The benefits of specs

• The discipline of writing specifications changes the incentive
structure of coding
– Rewards code that is easy to describe and understand
– Punishes code that is hard to describe and understand

• Even if it is shorter or easier to write

• If you find yourself writing complicated specifications, it is an
incentive to redesign
– In sub, code that does exactly the right thing may be slightly

slower than a hack that assumes no partial matches before
true matches, but cost of forcing client to understand the
details is too high

Overview

q Motivation for Specifications
q Towards Writing a Specification
q Javadoc
q Comparing Specifications
q Closing Javadoc

Writing specifications with Javadoc

• Javadoc
– A great tool for writing formal specs!

• Javadoc convention for writing specifications
– Method signature
– Text description of method
– @param: description of what gets passed in
– @return: description of what gets returned
– @throws: exceptions that may occur

More info in Effective Java! EJ2: 44 / EJ3: 56 --
Write doc comments for all exposed API elements

Example: Javadoc for String.contains

/**

* Returns true if and only if this string contains the specified

* sequence of char values.

*

* @param s the sequence to search for

* @return true if this string contains {@code s}, false otherwise

* @throws NullPointerException if s is null

* @since 1.5

*/

public boolean contains(CharSequence s) {

...

}

Example: Javadoc for String.contains

/**

* Returns true if and only if this string contains the specified

* sequence of char values.

*

* @param s the sequence to search for

* @return true if this string contains {@code s}, false otherwise

* @throws NullPointerException if s is null

* @since 1.5

*/

public boolean contains(CharSequence s) {

...

}

Starts with /**

Overall description

@param tag for
each parameter

@return tag unless
return type is void@throws tag for every

exception, whether
checked or unchecked

More info in Effective Java! EJ2: 44 / EJ3: 56 --
Write doc comments for all exposed API elements

CSE 331 specifications

• The precondition: constraints that hold before the method is called
(if not, all bets are off)
– @requires: spells out any obligations on client

• The postcondition: constraints that hold after the method is called
(if the precondition held)
– @modifies: lists objects that may be affected by method; any

object not listed is guaranteed to be untouched
– @effects: gives guarantees on final state of modified objects
– @throws: lists possible exceptions and conditions under

which they are thrown (Javadoc uses this too)
– @return: describes return value (Javadoc uses this too)

Lecture Slides Disclaimer

• In the interest of saving slide space and focusing on preconditions
and postconditions, the following examples omit important parts of
the javadoc, including:
– overall description
– @param tags

• When you write javadocs, include all the parts! J

Example 1
static <T> int change(List<T> lst, T oldelt, T newelt)

requires lst, oldelt, and newelt are non-null.
oldelt occurs in lst.

modifies lst
effects change the first occurrence of oldelt in lst to newelt

& makes no other changes to lst
returns the position of the element in lst that was oldelt and

is now newelt

static <T> int change(List<T> lst,
T oldelt, T newelt) {

int i = 0;
for (T curr : lst) {

if (curr == oldelt) {
lst.set(newelt, i);
return i;

}
i = i + 1;

}
return -1;

}

Example 2

static List<Integer> zipSum(List<Integer> lst1, List<Integer> lst2)
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.
modifies none
effects none
returns a list of same size where the ith element is

the sum of the ith elements of lst1 and lst2

static List<Integer> zipSum(List<Integer> lst1
List<Integer> lst2) {

List<Integer> res = new ArrayList<Integer>();
for(int i = 0; i < lst1.size(); i++) {

res.add(lst1.get(i) + lst2.get(i));
}
return res;

}

Example 3

static void listAdd(List<Integer> lst1, List<Integer> lst2)
requires lst1 and lst2 are non-null.

lst1 and lst2 are the same size.
modifies lst1
effects ith element of lst2 is added to the ith element of lst1
returns none

static void listAdd(List<Integer> lst1,
List<Integer> lst2) {

for(int i = 0; i < lst1.size(); i++) {
lst1.set(i, lst1.get(i) + lst2.get(i));

}
}

Example 4 (Watch out for bugs!)

static void uniquify(List<Integer> lst)
requires ???

???
modifies ???
effects ???
returns ???

static void uniquify(List<Integer> lst) {
for (int i=0; i < lst.size()-1; i++)

if (lst.get(i) == lst.get(i+1))
lst.remove(i);

}

Should requires clause be checked?

If the client calls a method without meeting the precondition, the
code is free to do anything

– Including pass corrupted data back
– It is polite, nevertheless, to fail fast: to provide an immediate

error, rather than permitting mysterious bad behavior

Preconditions are common in “helper” methods/classes
– In public libraries, it’s friendlier to deal with all possible input
– Example: binary search would normally impose a pre-

condition rather than simply failing if list is not sorted. Why?

Rule of thumb: Check if cheap to do so
– Example: list has to be non-null à check
– Example: list has to be sorted à skip

Satisfaction of a specification

Let M be an implementation and S a specification

M satisfies S if and only if
– Every behavior of M is permitted by S
– “The behavior of M is a subset of S”

The statement “M is correct” is meaningless!
– Though often made!

If M does not satisfy S, either (or both!) could be “wrong”
– “One person’s feature is another person’s bug.”
– Usually better to change the program than the spec

The benefits of specs (revisited)

Specification means that client doesn't need to look at
implementation

– So the code may not even exist yet!

Write specifications first, make sure system will fit together, and
then assign separate implementers to different modules

– Allows teamwork and parallel development
– Also helps with testing (future topic)

Javadocs in 331 (Summary)

• Method Javadoc in 331 homework
– Overall description of what the method does
– @param: one param tag for each parameter, containing its

type and description
– @requires: preconditions for parameters and this
– @modifies: lists objects visible to client that may be

modified, including parameters and this
– @effects: gives guarantees on final state of modified

objects
– @throws: one throws tag for each possible exception type

and conditions under which they are thrown
– @return: describes return value

• Class Javadoc in 331 homework
– Overall description of the class

Overview

q Motivation for Specifications
q Towards Writing a Specification
q Javadoc
q Comparing Specifications
q Closing

Comparing
Specifications

Comparing specifications
Occasionally, we need to compare different versions of a
specification (Why?)

– For that, talk about weaker and stronger specifications

A weaker specification gives greater freedom to the implementer
– If specification S1 is weaker than S2, then for any

implementation M,
• M satisfies S2 => M satisfies S1
• but the opposite implication does not hold in general

Given two specifications, they may be incomparable
– Neither is weaker/stronger than the other
– Some implementations might still satisfy them both

Comparing specifications

A weaker specification gives greater freedom to the implementer
– If specification S1 is weaker than S2, then for any

implementation M,
• M satisfies S2 => M satisfies S1
• but the opposite implication does not hold in general
• N satisfies S1 does not imply N satisfies S2

S1 (stronger)
S2 (weaker)

M

N

Comparing specifications

Given two specifications, they may be incomparable
– Neither is weaker/stronger than the other
– Some implementations might still satisfy them both

S3
S4

Why compare specifications?

We wish to relate procedures to specifications
– Does the procedure satisfy the specification?
– Has the implementer succeeded?

We wish to compare specifications to one another
– Which specification (if either) is stronger?
– A procedure satisfying a stronger specification can be used

anywhere that a weaker specification is required
• Substitutability principle
• Accept at least as many inputs
• Produce no more outputs

Example 1
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)

return i;
}
return -1;

}

Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

Example 2
int find(int[] a, int value) {
for (int i=0; i<a.length; i++) {

if (a[i]==value)
return i;

}
return -1;

}

Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

Missing requires tag means
@requires {true}

Stronger and weaker specifications

A stronger specification is
– Harder to satisfy (more constraints on the implementation)
– Easier to use (more guarantees, more predictable, client can

make more assumptions)

A weaker specification is
– Easier to satisfy (easier to implement, more implementations

satisfy it)
– Harder to use (makes fewer guarantees)

Strengthening a specification

Strengthen a specification by:
– Promising more – any or all of:

• Effects clause harder to satisfy
• Returns clause harder to satisfy
• Fewer objects in modifies clause
• More specific exceptions (subclasses)

– Asking less of client
• Requires clause easier to satisfy

Weaken a specification by:
– (Opposite of everything above)

“Strange” case: @throws

Compare:
S1:

@throws FooException if x<0
@return x+3

S2:
@return x+3

• These are incomparable because they promise different,
incomparable things when x<0

• No possible implementation satisfies both S1 and S2
• Both are stronger than @requires x>=0; @return x+3

Missing throws tag means
@throws no exceptions

Which is better?

Stronger does not always mean better!

Weaker does not always mean better!

Strength of specification trades off:
– Usefulness to client
– Ease of simple, efficient, correct implementation
– Promotion of reuse and modularity
– Clarity of specification itself

“It depends”

More formal stronger/weaker

A specification is a logical formula
– S1 stronger than S2 if S1 implies S2
– From implication all things follow:

• Example: S1 stronger if requires is weaker
• Example: S1 stronger if returns is stronger

As in all logic (cf. CSE311), two rigorous ways to check implication
– Convert entire specifications to logical formulas and use logic

rules to check implication (e.g., P1 Ù P2 Þ P2)
– Check every behavior described by stronger also described by

the other
• CSE311: truth tables
• CSE331: transition relations

Transition relations

There is a program state before a method call and after
– All memory, values of all parameters/result, whether

exception happened, etc.

A specification “means” a set of pairs of program states
– The legal pre/post-states
– This is the transition relation defined by the spec

• Could be infinite
• Could be multiple legal outputs for same input

Stronger specification means the transition relation is a subset

Note: Transition relations often are infinite in size

Overview

q Motivation for Specifications
q Towards Writing a Specification
q Javadoc
q Comparing Specifications
q Closing

Closing

Closing

• HW1 Due tonight
• Quiz2 to be posted tonight

