
Leah Perlmutter / Summer 2018

CSE 331
Software Design and Implementation

Lecture 2
Formal Reasoning

Announcements
• First section tomorrow!
• Homework 0 due today (Wednesday) at 10 pm

• Heads up: no late days for this one!
• Quiz 1 due tomorrow (Thursday) at 10 pm
• Homework 1 due Monday at 10 pm

• Will be posted by tomorrow
• Message board

• Use “needs-answer” tag on questions that need an
answer

• Collaboration policy clarification

Overview
q Motivation
q Reasoning Informally
q Hoare Logic
q Weaker and Stronger Statements
q Variable Renaming

Note: This lecture has very helpful notes on the
course website!

Why Formal
Reasoning

Formalization and Reasoning

Geometry gives us incredible power
• Lets us represent shapes symbolically
• Provides basic truths about these shapes
• Gives rules to combine small truths into bigger truths

Geometric proofs often establish general truths

p
q

r
a c

b
a2 + b2 = c2 p + q + r = 180

Formalization and Reasoning

Formal reasoning provides tradeoffs
+ Establish truth for many (possibly infinite) cases
+ Know properties ahead of time, before object exists
- Requires abstract reasoning and careful thinking
- Need basic truths and rules for combining truths

Today: develop formal reasoning for programs
• What is true about a program’s state as it executes?
• How do basic constructs change what’s true?
• Two flavors of reasoning: forward and backward

Reasoning About Programs
• Formal reasoning tells us what’s true of a program’s

state as it executes, given an initial assumption or a
final goal
• What are some things we might want to know about

certain programs?
• If x > 0 initially, then y == 0 when loop exits
• Contents of array arr refers to are sorted
• Except at one program point, x + y == z
• For all instances of Node n,

n.next == null \/ n.next.prev == n
• …

Why Reason About Programs?
Essential complement to testing

• Testing shows specific result for a specific input

Proof shows general result for entire class of inputs
• Guarantee code works for any valid input
• Can only prove correct code, proving uncovers bugs
• Provides deeper understanding of why code is correct

Precisely stating assumptions is essence of spec
• “Callers must not pass null as an argument”
• “Callee will always return an unaliased object”

Why Reason About Programs?
“Today a usual technique is to make a program and
then to test it. While program testing can be a very
effective way to show the presence of bugs, it is
hopelessly inadequate for showing their absence.
The only effective way to raise the confidence level
of a program significantly is to give a convincing
proof of its correctness. ”

-- Dijkstra (1972)

Why Reason About Programs?

• Re-explain to your neighbor (groups of 3-4)
• TAs may have some useful insights!
• Then share interesting thoughts/questions from

your discissions.

Overview
q Motivation
q Reasoning Informally
q Hoare Logic
q Weaker and Stronger Statements
q Variable Renaming

Reasoning
Informally

Our Approach
Hoare Logic, an approach developed in the 70’s

• Focus on core: assignments, conditionals, loops
• Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

How Does This Get Used?
Current practitioners rarely use Hoare logic explicitly

• For simple program snippets, often overkill
• For full language features (aliasing) gets complex
• Shines for developing loops with subtle invariants

• See Homework 0, Homework 2

Ideal for introducing program reasoning foundations
• How does logic “talk about” program states?
• How can program execution “change what’s true”?
• What do “weaker” and “stronger” mean in logic?

All essential for specifying library interfaces!

Informal Notation Warning

• The slides in this section have informal notation
• You will need to use more formal notation on

your homework (after hw0)

Forward Reasoning Example

Suppose we initially know (or assume) w > 0

// w > 0
x = 17;
// w > 0 ∧ x == 17
y = 42;
// w > 0 ∧ x == 17 ∧ y == 42
z = w + x + y;
// w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
…

Then we know various things after, e.g., z > 59

∧ = AND

Backward Reasoning Example

Suppose we want z < 0 at the end

// w + 17 + 42 < 0
x = 17;
// w + x + 42 < 0
y = 42;
// w + x + y < 0
z = w + x + y;
// z < 0

Then initially we need w < -59

For the assertion after
this statement to be
true, what must be true
before it?

Forward vs. Backward

Forward Reasoning
• Determine what follows from initial assumptions
• Useful for ensuring an invariant is maintained

Backward Reasoning
• Determine sufficient conditions for a certain result
• Desired result: assumptions need for correctness
• Undesired result: assumptions needed to trigger bug

Forward vs. Backward
Forward Reasoning

• Simulates the code for many inputs at once
• May feel more natural
• Introduces (many) potentially irrelevant facts

Backward Reasoning
• Often more useful, shows how each part affects goal
• May feel unnatural until you have some practice
• Powerful technique used frequently in research

Conditionals

Key ideas:
1. The precondition for each branch includes

information about the result of the condition
2. The overall postcondition is the disjunction (“or”) of

the postconditions of the branches

// initial assumptions
if(...) {

... // also know condition is true
} else {

... // also know condition is false
}
// either branch could have executed

Conditional Example (Fwd)
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {

// x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
z = x;
// … ∧ z > 0

} else {
// x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
z = x + 1;
// … ∧ z == 1

}
// (… ∧ z > 0) ∨ (… ∧ z == 1) (so z > 0)

Overview
q Motivation
q Reasoning Informally
q Hoare Logic
q Weaker and Stronger Statements
q Variable Renaming

Hoare Logic

Our Approach
Hoare Logic, an approach developed in the 70’s

• Focus on core: assignments, conditionals, loops
• Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

Notation and Terminology
Precondition: “assumption” before some code
Postcondition: “what holds” after some code

Conventional to write pre/postconditions in
“{…}”

{ w < -59 }
x = 17;
{ w + x < -42 }

Preconditions and Postconditions are two types of
Formal Assertions.

Hoare Logic

and Beyond

Specific to

Hoare Logic

Notation and Terminology
Note the “{...}” notation is NOT Java

Within pre/postcondition “=” means mathematical
equality, like Java’s “==” for numbers

{ w > 0 /\ x = 17 }

y = 42;

{ w > 0 /\ x = 17 /\ y = 42 }

Assertion Semantics (Meaning)
An assertion (pre/postcondition) is a logical formula
that can refer to program state (variables)

Given a variable, a program state tells you its value
• Or the value for any expression with no side effects

An assertion holds on a program state if evaluating
the assertion using the program state produces true

• An assertion represents the set of state for which it holds

Hoare Triples
A Hoare triple is code wrapped in two assertions

{ P } S { Q }

• P is the precondition
• S is the code (statement)
• Q is the postcondition

Hoare triple {P} S {Q} is valid if:
• For all states where P holds, executing S always

produces a state where Q holds
• “If P true before S, then Q must be true after”
• Otherwise the triple is invalid

Hoare Triple Examples
Valid or invalid?

• Assume all variables are integers without overflow

{x != 0} y = x*x; {y > 0}

{z != 1} y = z*z; {y != z}

{x >= 0} y = 2*x; {y > x}

{true} (if(x > 7){ y=4; }else{ y=3; }) {y < 5}

{true} (x = y; z = x;) {y=z}

{x=7 ∧ y=5}
(tmp=x; x=tmp; y=x;)

{y=7 ∧ x=5}

valid
invalid
invalid

valid

invalid

valid

Aside: assert in Java
A Java assertion is a statement with a Java expression

assert (x > 0 && y < x);

Similar to our assertions
• Evaluate with program state to get true or false

Different from our assertions
• Java assertions work at run-time
• Raise an exception if this execution violates assert
• … unless assertion checking disable (discuss later)

This week: we are reasoning about the code statically
(before run-time), not checking a particular input

The General Rules

So far, we decided if a Hoare trip was valid by
using our informal understanding of programming
constructs

Now we’ll show a general rule for each construct
• The basic rule for assignments (they change state!)
• The rule to combine statements in a sequence
• The rule to combine statements in a conditional
• The rule to combine statements in a loop [next time]

Basic Rule: Assignment
{ P } x = e; { Q }

Let Q’ be like Q except replace x with e

Triple is valid if:
For all states where P holds, Q’ also holds
• That is, P implies Q’, written P => Q’

Example: { z > 34 } y = z + 1; { y > 1 }
• Q’ is { z + 1 > 1 }

Combining Rule: Sequence
{ P } S1; S2 { Q }

Triple is valid iff there is an assertion R such that both the
following are valid:

• { P } S1 { R }
• { R } S2 { Q }

Example:
{ z >= 1 }
y = z + 1;
w = y * y;
{ w > y }

Let R be {y > 1}
1. Show {z >= 1} y = z + 1 {y > 1}

Use basic assign rule:
z >= 1 implies z + 1 > 1

2. Show {y > 1} w = y * y {w > y}
Use basic assign rule:
y > 1 implies y * y > y

Combining Rule: Conditional
{ P } if(b) S1 else S2 { Q }

Triple is valid iff there are assertions Q1, Q2 such that:
• { P /\ b } S1 { Q1 } is valid
• { P /\ !b } S2 { Q2 } is valid
• Q1 \/ Q2 implies Q

Example:
{ true }
if(x > 7)

y = x;
else

y = 20;
{ y > 5 }

Let Q1 be {y > 7} and Q2 be {y = 20}
- Note: other choices work too!

1. Show {true /\ x > 7} y = x {y > 7}

2. Show {true /\ x <= 7} y = 20 {y = 20}

3. Show y > 7 \/ y = 20 implies y > 5

∧ = AND
∨ = OR
! = NOT

Combining Rule: Conditional

y > 7 OR y = 20
7 20

5
y > 5

Q1 OR Q2

Q

=>

y > 7 OR y = 4
74

Q1 OR Q2’

=>
What if we change the code in a way that
changes Q2 to “y=4”

Combining Rule: Conditional
{ P } if(b) S1 else S2 { Q }

Triple is valid iff there are assertions Q1, Q2 such that:
• { P /\ b } S1 { Q1 } is valid
• { P /\ !b } S2 { Q2 } is valid
• Q1 \/ Q2 implies Q

Example:
{ true }
if(x > 7)

y = x;
else

y = 20;
{ y > 5 }

Let Q1 be {y > 7} and Q2 be {y = 20}
- Note: other choices work too!

1. Show {true /\ x > 7} y = x {y > 7}

2. Show {true /\ x <= 7} y = 20 {y = 20}

3. Show y > 7 \/ y = 20 implies y > 5

∧ = AND
∨ = OR
! = NOT

Overview
q Motivation
q Reasoning Informally
q Hoare Logic
q Weaker and Stronger Statements
q Variable Renaming

Weaker
and Stronger
Statements

Our Approach
Hoare Logic, an approach developed in the 70’s

• Focus on core: assignments, conditionals, loops
• Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2) then:
• P1 is stronger than P2
• P2 is weaker than P1

Whenever P1 holds, P2 is guaranteed to hold
• So it is at least as difficult to satisfy P1 as P2
• P1 holds on a subset of the states where P2 holds
• P1 puts more constraints on program states
• P1 is a “stronger” set of obligations / requirements

P1 P2

Weaker vs. Stronger Examples
x = 17

is stronger than
x > 0

x is prime

neither stronger nor weaker than
x is odd

x is prime /\ x > 2

is stronger than
x is odd /\ x > 2

x = 17 x > 0

17 1, 5, 100

-1, -3

x prime
x odd

3, 5, 17

15, 21

4, 100

2

x odd
3, 5, 17

15, 21

4, 100

2

Strength and Hoare Logic
Suppose:

• {P} S {Q} and
• P is weaker than some P1 and
• Q is stronger than some Q1

Then {P1} S {Q} and {P} S {Q1} and {P1} S {Q1}

Example:
• P is x >= 0
• P1 is x > 0
• S is y = x+1

• Q is y > 0
• Q1 is y >= 0

“Wiggle Room”

Strength and Hoare Logic
For backward reasoning, if we want {P}S{Q}, we could:

1. Show {P1}S{Q}, then
2. Show P => P1

Better, we could just show {P2}S{Q} where P2 is the
weakest precondition of Q for S

• Weakest means the most lenient assumptions such that Q will
hold after executing S

• Any precondition P such that {P}S{Q} is valid will be
stronger than P2, i.e., P => P2

Amazing (?): Without loops/methods, for any S and Q,
there exists a unique weakest precondition, written
wp(S,Q)

• Like our general rules with backward reasoning

Weakest Precondition
wp(x = e, Q) is Q with each x replaced by e

• Example: wp(x = y*y;, x > 4) is y*y > 4, i.e., |y| > 2

wp(S1;S2, Q) is wp(S1,wp(S2,Q))
• i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)
• Example: wp((y=x+1; z=y+1;), z > 2) is

(x + 1)+1 > 2, i.e., x > 0

wp(if b S1 else S2, Q) is this logical formula:
(b ∧ wp(S1,Q)) ∨ (!b ∧ wp(S2,Q))

• In any state, b will evaluate to either true or false…
• You can sometimes then simplify the result

Simple Examples
If S is x = y*y and Q is x > 4,

then wp(S,Q) is y*y > 4, i.e., |y| > 2

If S is y = x + 1; z = y – 3; and Q is z = 10,
then wp(S,Q) …
= wp(y = x + 1; z = y – 3;, z = 10)
= wp(y = x + 1;, wp(z = y – 3;, z = 10))
= wp(y = x + 1;, y-3 = 10)
= wp(y = x + 1;, y = 13)
= x+1 = 13
= x = 12

Bigger Example
S is if (x < 5) {

x = x*x;
} else {

x = x+1;
}

Q is x >= 9

wp(S, x >= 9)
= (x < 5 ∧ wp(x = x*x;, x >= 9))
∨ (x >= 5 ∧ wp(x = x+1;, x >= 9))

= (x < 5 ∧ x*x >= 9)
∨ (x >= 5 ∧ x+1 >= 9)

= (x <= -3) ∨ (x >= 3 ∧ x < 5)
∨ (x >= 8)

-4 -3 -2 -1 0 721 4 653 8 9

Conditionals Review
Forward reasoning

{P}
if B

{P ∧ B}
S1
{Q1}

else
{P ∧ !B}
S2
{Q2}

{Q1 ∨ Q2}

Backward reasoning

{ (B ∧ wp(S1, Q))
∨ (!B ∧ wp(S2, Q)) }

if B
{wp(S1, Q)}
S1
{Q}

else
{wp(S2, Q)}
S2
{Q}

{Q}

“Correct”
If wp(S, Q) is true, then executing S will always
produce a state where Q holds, since true holds for
every program state.

If our program state only has one variable, x, we can
think of the true precondition as an assertion that
holds for all values of x.

-4 -3 -2 -1 0 721 4 653 8 9
x

Oops! Forward Bug…
With forward reasoning, our intuitve rule for assignment is wrong:

• Changing a variable can affect other assumptions

Example:
{true}
w = x+y;
{w = x + y;}
x = 4;
{w = x + y ∧ x = 4}
y = 3;
{w = x + y ∧ x = 4 ∧ y = 3}

But clearly we do not know w = 7 (!!!)

Fixing Forward Assignment
When you assign to a variable, you need to replace all other
uses of the variable in the post-condition with a different
“fresh” variable, so that you refer to the “old contents”

Corrected example:
{true}
w=x+y;
{w = x + y;}
x=4;
{w = x1 + y ∧ x = 4}
y=3;
{w = x1 + y1 ∧ x = 4 ∧ y = 3}

Useful Example: Swap
Name initial contents so we can refer to them in the post-condition

Just in the formulas: these “names” are not in the program

Use these extra variables to avoid “forgetting” “connections”

{x = x_pre ∧ y = y_pre}
tmp = x;
{x = x_pre ∧ y = y_pre ∧ tmp=x}
x = y;
{x = y ∧ y = y_pre ∧ tmp=x_pre}
y = tmp;
{x = y_pre ∧ y = tmp ∧ tmp=x_pre}

Announcements

Announcements
• First section tomorrow!
• Homework 0 due today (Wednesday) at 10 pm

• Heads up: no late days for this one!
• Quiz 1 due tomorrow (Thursday) at 10 pm
• Homework 1 due Monday at 10 pm

• Will be posted by tomorrow
• Read the Formal Reasoning Notes

• posted on the course website
• Friday’s lecture is on one of the hardest topics

