Announcements

- First section tomorrow!
- Homework 0 due today (Wednesday) at 10 pm
 - Heads up: no late days for this one!
- Quiz 1 due tomorrow (Thursday) at 10 pm
- Homework 1 due Monday at 10 pm
 - Will be posted by tomorrow
- Message board
 - Use “needs-answer” tag on questions that need an answer
- Collaboration policy clarification

Overview

- Motivation
- Reasoning Informally
- Hoare Logic
- Weaker and Stronger Statements
- Variable Renaming

Note: This lecture has very helpful notes on the course website!
Formalization and Reasoning

Geometry gives us incredible power
- Lets us represent shapes symbolically
- Provides basic truths about these shapes
- Gives rules to combine small truths into bigger truths

Geometric proofs often establish *general* truths

![Geometric diagram](image)

\[a^2 + b^2 = c^2 \]
\[p + q + r = 180 \]

Why Reason About Programs?

Essential complement to *testing*
- Testing shows specific result for a specific input

Proof shows general result for entire class of inputs
- *Guarantee* code works for *any* valid input
- Can only prove correct code, proving uncovers bugs
- Provides deeper understanding of why code is correct

Precisely stating assumptions is essence of spec
- “Callers must not pass *null* as an argument”
- “Callee will always return an unaliased object”

Formalization and Reasoning

Formal reasoning provides tradeoffs
+ Establish truth for many (possibly infinite) cases
+ Know properties ahead of time, before object exists
- Requires abstract reasoning and careful thinking
- Need basic truths and rules for combining truths

Today: develop formal reasoning for programs
- What is true about a program’s state as it executes?
- How do basic constructs change what’s true?
- Two flavors of reasoning: *forward* and *backward*

Reasoning About Programs

- Formal reasoning tells us what’s true of a program’s state as it executes, given an initial assumption or a final goal
- What are some things we might want to know about certain programs?
 - If \(x > 0 \) initially, then \(y == 0 \) when loop exits
 - Contents of array \(arr \) refers to are sorted
 - Except at one program point, \(x + y == z \)
 - For all instances of \(Node \ n \),
 \[n.next == null \lor n.next.prev == n \]
 - ...
Why Reason About Programs?

“Today a usual technique is to make a program and then to test it. *While program testing can be a very effective way to show the presence of bugs, it is hopelessly inadequate for showing their absence.* The only effective way to raise the confidence level of a program significantly is to give a convincing proof of its correctness.”

-- Dijkstra (1972)

Overview

- Motivation
- Reasoning Informally
- Hoare Logic
- Weaker and Stronger Statements
- Variable Renaming

Reasoning Informally

- Re-explain to your neighbor (groups of 3-4)
- TAs may have some useful insights!
- Then share interesting thoughts/questions from your discussions.
Our Approach

Hoare Logic, an approach developed in the 70’s
- Focus on core: assignments, conditionals, loops
- Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

How Does This Get Used?

Current practitioners rarely use Hoare logic explicitly
- For simple program snippets, often overkill
- For full language features (aliasing) gets complex
- Shines for developing loops with subtle invariants
 - See Homework 0, Homework 2

Ideal for introducing program reasoning foundations
- How does logic “talk about” program states?
- How can program execution “change what’s true”?
- What do “weaker” and “stronger” mean in logic?

All essential for specifying library interfaces!

Informal Notation Warning

- The slides in this section have informal notation
- You will need to use more formal notation on your homework (after hw0)

Forward Reasoning Example

Suppose we initially know (or assume) \(w > 0 \)

```plaintext
// w > 0
x = 17;
// w > 0  ∧  x == 17
y = 42;
// w > 0  ∧  x == 17  ∧  y == 42
z = w + x + y;
// w > 0  ∧  x == 17  ∧  y == 42  ∧  z > 59
...
```

Then we know various things after, e.g., \(z > 59 \)
Backward Reasoning Example

Suppose we want \(z < 0 \) at the end

\[
// \ w + 17 + 42 < 0 \\
x = 17; \\
// \ w + x + 42 < 0 \\
y = 42; \\
// \ w + x + y < 0 \\
z = w + x + y; \\
// \ z < 0
\]

Then initially we need \(w < -59 \)

For the assertion after this statement to be true, what must be true before it?

Forward vs. Backward

Forward Reasoning
- Determine what follows from initial assumptions
- Useful for ensuring an invariant is maintained

Backward Reasoning
- Determine sufficient conditions for a certain result
- Desired result: assumptions need for correctness
- Undesired result: assumptions needed to trigger bug

Conditionals

// initial assumptions
if(...) {
 ... // also know condition is true
} else {
 ... // also know condition is false
}
// either branch could have executed

Key ideas:
1. The precondition for each branch includes information about the result of the condition
2. The overall postcondition is the disjunction ("or") of the postconditions of the branches
Conditional Example (Fwd)

// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
 // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
 z = x;
 // ... ∧ z > 0
} else {
 // x >= 0 ∧ z == 0 ∧ !(!x!=0) (so x == 0)
 z = x + 1;
 // ... ∧ z == 1
}
// (... ∧ z > 0) ∨ (... ∧ z >= 1) (so z > 0)

Overview

- Motivation
- Reasoning Informally
- Hoare Logic
- Weaker and Stronger Statements
- Variable Renaming

Our Approach

Hoare Logic, an approach developed in the 70’s
- Focus on core: assignments, conditionals, loops
- Omit complex constructs like objects and methods

Today: the basics for **assign, sequence, if** in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops
Notation and Terminology

Precondition: “assumption” before some code
Postcondition: “what holds” after some code

Conventional to write pre/postconditions in “{...}”

\{ w < -59 \}
x = 17;
\{ w + x < -42 \}

Preconditions and Postconditions are two types of Formal Assertions.

Notation and Terminology

Note the “{...}” notation is NOT Java

Within pre/postcondition “=” means mathematical equality, like Java’s “==” for numbers

\{ w > 0 \land x = 17 \}
y = 42;
\{ w > 0 \land x = 17 \land y = 42 \}

Assertion Semantics (Meaning)

An assertion (pre/postcondition) is a logical formula that can refer to program state (variables)

Given a variable, a program state tells you its value
 • Or the value for any expression with no side effects

An assertion holds on a program state if evaluating the assertion using the program state produces true
 • An assertion represents the set of state for which it holds

Hoare Triples

A Hoare triple is code wrapped in two assertions

\{ P \} S \{ Q \}

• P is the precondition
• S is the code (statement)
• Q is the postcondition

Hoare triple \{ P \} S \{ Q \} is valid if:
• For all states where P holds, executing S always produces a state where Q holds
• “If P true before S, then Q must be true after”
• Otherwise the triple is invalid
Hoare Triple Examples

Valid or invalid?
- Assume all variables are integers without overflow

\{ x \neq 0 \} y = x*x; \{ y > 0 \} \quad \text{valid}

\{ z \neq 1 \} y = z*z; \{ y \neq z \} \quad \text{invalid}

\{ x \geq 0 \} y = 2*x; \{ y > x \} \quad \text{invalid}

\{ \text{true} \} (\text{if}(x > 7)\{ y=4; \} \text{else} \{ y=3; \}) \{ y < 5 \} \quad \text{valid}

\{ \text{true} \} (x = y; z = x;) \{ y=z \} \quad \text{valid}

\{ x=7 \land y=5 \}
\{ \text{tmp} = x; x=\text{tmp}; y=x; \} \quad \text{invalid}

\{ y=7 \land x=5 \}

The General Rules

So far, we decided if a Hoare trip was valid by using our informal understanding of programming constructs

Now we’ll show a general rule for each construct
- The basic rule for assignments (they change state!)
- The rule to combine statements in a sequence
- The rule to combine statements in a conditional
- The rule to combine statements in a loop [next time]

Aside: assert in Java

A Java assertion is a statement with a Java expression

\text{assert} (x > 0 \&\& y < x);

Similar to our assertions
- Evaluate with program state to get true or false

Different from our assertions
- Java assertions work at \text{run-time}
- Raise an exception if this execution violates assert
 - … unless assertion checking disable (discuss later)

This week: we are \textit{reasoning} about the code \textit{statically} (before run-time), not checking a particular input

Basic Rule: Assignment

\{ P \} x = e; \{ Q \}

Let \(Q' \) be like \(Q \) except replace \(x \) with \(e \)

Triple is valid if:
- The basic rule for assignments (they change state!)
- The rule to combine statements in a sequence
- The rule to combine statements in a conditional
- The rule to combine statements in a loop [next time]

Example: \{ z > 34 \} y = z + 1; \{ y > 1 \}
- \(Q' \) is \{ z + 1 > 1 \}
Combining Rule: Sequence

\(\{ P \} S_1; S_2 \{ Q \} \)

Triple is valid iff there is an assertion \(R \) such that both the following are valid:
- \(\{ P \} S_1 \{ R \} \)
- \(\{ R \} S_2 \{ Q \} \)

Example:
\[
\{ z \geq 1 \} \\
y = z + 1; \\
w = y \times y; \\
\{ w > y \}
\]

Let \(R = \{ y > 1 \} \)
1. Show \(\{ z \geq 1 \} \ y = z + 1 \{ y > 1 \} \)
 Use basic assign rule:
 \(z \geq 1 \) implies \(z + 1 > 1 \)
2. Show \(\{ y > 1 \} \ w = y \times y \{ w > y \} \)
 Use basic assign rule:
 \(y > 1 \) implies \(y \times y > y \)

Combining Rule: Conditional

\(\{ P \} \text{if}(b) S_1 \text{else} S_2 \{ Q \} \)

Triple is valid iff there are assertions \(Q_1, Q_2 \) such that:
- \(\{ P \wedge \neg b \} S_1 \{ Q_1 \} \) is valid
- \(\{ P \wedge b \} S_2 \{ Q_2 \} \) is valid
- \(Q_1 \wedge \neg Q_2 \) implies \(Q \)

Example:
\[
\{ \text{true} \} \\
\text{if}(x > 7) \\
y = x; \\
\text{else} \\
y = 20; \\
\{ y > 5 \}
\]

Let \(Q_1 = \{ y > 7 \} \) and \(Q_2 = \{ y = 20 \} \)
1. Show \(\{ \text{true} \wedge x > 7 \} \ y = x \{ y > 7 \} \)
2. Show \(\{ \text{true} \wedge x \leq 7 \} \ y = 20 \{ y = 20 \} \)
3. Show \(y > 7 \wedge y = 20 \) implies \(y > 5 \)

What if we change the code in a way that changes \(Q_2 \) to “\(y=4 \)”

\(y > 7 \text{ OR } y = 20 \)
\(y > 5 \)
\(y > 7 \text{ OR } y = 4 \)

Let \(Q_1 = \{ y > 7 \} \) and \(Q_2' = \{ y = 4 \} \)
1. Show \(\{ \text{true} \wedge x > 7 \} \ y = x \{ y > 7 \} \)
2. Show \(\{ \text{true} \wedge x \leq 7 \} \ y = 20 \{ y = 20 \} \)
3. Show \(y > 7 \wedge y = 20 \) implies \(y > 5 \)
Overview

- Motivation
- Reasoning Informally
- Hoare Logic
 - Weaker and Stronger Statements
 - Variable Renaming

Our Approach

Hoare Logic, an approach developed in the 70's
- Focus on core: assignments, conditionals, loops
- Omit complex constructs like objects and methods

Today: the basics for assign, sequence, if in 3 steps
1. High-level intuition for forward and backward reasoning
2. Precisely define assertions, preconditions, etc.
3. Define weaker/stronger and weakest precondition

Next lecture: loops

Weaker vs. Stronger

If P_1 implies P_2 (written $P_1 \Rightarrow P_2$) then:
- P_1 is stronger than P_2
- P_2 is weaker than P_1

Whenever P_1 holds, P_2 is guaranteed to hold
- So it is at least as difficult to satisfy P_1 as P_2
- P_1 holds on a subset of the states where P_2 holds
- P_1 puts more constraints on program states
- P_1 is a “stronger” set of obligations / requirements
Weaker vs. Stronger Examples

- **x = 17** is stronger than **x > 0**.
- **x is prime** neither stronger nor weaker than **x is odd**.
- **x is prime / \ x > 2** is stronger than **x is odd / \ x > 2**.

Strength and Hoare Logic

Suppose:
- \{P\} S \{Q\} and
- P is weaker than some P\(_1\) and
- Q is stronger than some Q\(_1\)

Then \{P\(_1\)\} S \{Q\} and \{P\} S \{Q\(_1\)\} and \{P\(_1\)\} S \{Q\(_1\)\}

Example:
- P is x >= 0
- P\(_1\) is x > 0
- S is y = x+1
- Q is y > 0
- Q\(_1\) is y >= 0

"Wiggle Room"

Weakest Precondition

wp(x = e, Q) is Q with each x replaced by e

- Example: wp(x = y*y; x > 4) is y*y > 4, i.e., |y| > 2

wp(S\(_1\); S\(_2\), Q) is wp(S\(_1\), wp(S\(_2\), Q))
- i.e., let R be wp(S\(_2\), Q) and overall wp is wp(S\(_1\), R)
- Example: wp((y=x+1; z=y+1;), z > 2) is (x + 1) + 1 > 2, i.e., x > 0

wp(if b S\(_1\) else S\(_2\), Q) is this logical formula:

(b ∧ wp(S\(_1\), Q)) ∨ (!b ∧ wp(S\(_2\), Q))
- In any state, b will evaluate to either true or false...
- You can sometimes then simplify the result
Simple Examples

If S is $x = y*y$ and Q is $x > 4$, then $wp(S,Q)$ is $y*y > 4$, i.e., $|y| > 2$.

If S is $y = x + 1; z = y - 3;$ and Q is $z = 10$, then $wp(S,Q)$...

$= wp(y = x + 1; z = y - 3; , z = 10)$
$= wp(y = x + 1; , wp(z = y - 3; , z = 10))$
$= wp(y = x + 1; , y-3 = 10)$
$= wp(y = x + 1; , y = 13)$
$= x+1 = 13$
$= x = 12$

Bigger Example

S is if (x < 5) {
 x = x*x;
} else {
 x = x+1;
}
Q is $x >= 9$

$wp(S, x >= 9)$

= (x < 5 ∧ wp(x = x*x;, x >= 9))
 ∨ (x >= 5 ∧ wp(x = x+1;, x >= 9))
 = (x < 5 ∧ x*x >= 9)
 ∨ (x >= 5 ∧ x+1 >= 9)
 = (x <= -3) ∨ (x >= 3 ∧ x < 5)
 ∨ (x >= 8)

“Correct”

If $wp(S, Q)$ is true, then executing S will always produce a state where Q holds, since true holds for every program state.

If our program state only has one variable, x, we can think of the true precondition as an assertion that holds for all values of x.
Oops! Forward Bug…

With forward reasoning, our intuitive rule for assignment is wrong:
• Changing a variable can affect other assumptions

Example:

\[
\begin{align*}
\{ \text{true} \} \\
& w = x + y; \\
& \{ w = x + y; \} \\
& x = 4; \\
& \{ w = x + y \land x = 4 \} \\
& y = 3; \\
& \{ w = x + y \land x = 4 \land y = 3 \}
\end{align*}
\]

But clearly we do not know \(w = 7 \) (!!!)

Fixing Forward Assignment

When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different “fresh” variable, so that you refer to the “old contents”

Corrected example:

\[
\begin{align*}
\{ \text{true} \} \\
& w = x + y; \\
& \{ w = x + y; \} \\
& x = 4; \\
& \{ w = x_1 + y \land x = 4 \} \\
& y = 3; \\
& \{ w = x_1 + y_1 \land x = 4 \land y = 3 \}
\end{align*}
\]

Useful Example: Swap

Name initial contents so we can refer to them in the post-condition

Just in the formulas: these “names” are not in the program

Use these extra variables to avoid “forgetting” “connections”

\[
\begin{align*}
& \{ x = x_{pre} \land y = y_{pre} \} \\
& \text{tmp} = x; \\
& \{ x = x_{pre} \land y = y_{pre} \land \text{tmp}=x \} \\
& x = y; \\
& \{ x = y \land y = y_{pre} \land \text{tmp}=x_{pre} \} \\
& y = \text{tmp}; \\
& \{ x = y_{pre} \land y = \text{tmp} \land \text{tmp}=x_{pre} \}
\end{align*}
\]

Announcements
Announcements

• First section tomorrow!
• Homework 0 due today (Wednesday) at 10 pm
 • Heads up: no late days for this one!
• Quiz 1 due tomorrow (Thursday) at 10 pm
• Homework 1 due Monday at 10 pm
 • Will be posted by tomorrow
• Read the Formal Reasoning Notes
 • posted on the course website
• Friday’s lecture is on one of the hardest topics