
 CSE 331 Midterm Exam 2/13/12

 Page 1 of 9

Name __

There are 10 questions worth a total of 100 points. Please budget your time so you get to

all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, etc.

Many of the questions have short solutions, even if the question is somewhat long. Don’t

be alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s

output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 14

2. ______ / 25

3. ______ / 12

4. ______ / 12

5. ______ / 12

6. ______ / 6

7. ______ / 6

8. ______ / 6

9. ______ / 6

10. ______ / 1

 CSE 331 Midterm Exam 2/13/12

 Page 2 of 9

Question 1. (14 points) (assertions) Using backwards reasoning, find the weakest

precondition for each sequence of statements and postconditions below. Insert

appropriate assertions in each blank line. You should simplify your answers if possible.

(a)

 { __ }

 a = x + 1;

 { __ }

 b = y - x;

 { a*x + b > 0 }

(b)

 { __ }

 y = y + 1;

 { __ }

 x = y + 3;

 { x > 0 & y < 0 }

 CSE 331 Midterm Exam 2/13/12

 Page 3 of 9

Question 2. (25 points) Loop development. The factorial function, as you probably

remember, is defined as n! = 1 * 2 * 3 * … * n, i.e., the product of the numbers 1 through

n. For this problem, complete the following non-recursive method to compute and

return n! and prove that it computes and returns the correct answer. The method heading

is provided for you as is the declaration of variable ans and the return statement at the

end. You should declare additional variables as you need them. Your answer should

supply the method code and include assertions, preconditions, postconditions, and

invariants as needed to prove it is correct.

 // return the value n! = 1 * 2 * ... * n

 // pre: n > 0

 int fact(int n) {

 int ans;

 { ans == n! (where n is the original argument value) }

 return ans;

 }

 CSE 331 Midterm Exam 2/13/12

 Page 4 of 9

Question 3. (12 points) (Specifications) Consider the following specifications for a

method that has one integer argument:

(a) Returns an integer ≥ the argument

(b) Returns a non-negative integer ≥ the argument

(c) Returns argument – 1

(d) Returns argument
2

(i.e., the square of the argument)

(e) Returns a non-negative number

Consider these implementations, where arg is the function argument value:

(i) return arg + 5;

(ii) return arg * arg;

(iii) return arg % 10;

(iv) return Math.abs(arg);

(v) return Integer.MAX_VALUE;

Place a check mark in each box for which the implementation satisfies the specification.

If the implementation does not satisfy the specification, leave the box blank.

Implementation

Specification

(a) (b) (c) (d) (e)

(i)

(ii)

(iii)

(iv)

(v)

 CSE 331 Midterm Exam 2/13/12

 Page 5 of 9

Question 4. (12 points) A bit of code reading. Consider the following ADT, which we

wish to use to represent a line of people waiting to buy tickets at a movie theater.

public class WaitLine {

 // instance variable

 private List<String> people;

 // AF: people represents a list of persons in a line (say

 // at a movie theater). They are enqueued at the end of

 // the line when they arrive and dequeued in that order.

 // RI: entries in people are not null and, for persons A

 // and B, A appears in people before B if enqueue(A) was

 // called before enqueue(B).

 // constructor

 public WaitLine() {

 people = new LinkedList<String>();

 checkRep();

 }

 // mutators

 public void enqueue(String p) {

 people.add(p);

 checkRep();

 }

 public String dequeue() {

 if (people.size() == 0) return null;

 String p = people.remove(0);

 checkRep();

 return p;

 }

 // observers

 public int size() { return people.size(); }

 public List<String> getEveryone() { return people; }

 // internal method

 private void checkRep() {

 for (String p: people) assert p!= null;

 }

}

Answer the questions about this class on the next page. You may remove this page for

reference if you wish.

 CSE 331 Midterm Exam 2/13/12

 Page 6 of 9

Question 4. (cont.) Answer the following questions about the WaitLine class on the

previous page. Be brief: you shouldn’t need more than a short sentence or two for each

answer, but you do need to justify your conclusions.

(a) The dequeue method returns null if the queue is empty. Is this a reasonable way

for the method to behave if the queue is empty? Does it create problems or ambiguities

for clients using this class?

(b) Are there any potential representation exposure problems with this class? If so, what

are they, and how could they be fixed, preferably without major changes to the class?

(c) Is the definition and use of checkRep reasonable, given the operations in the class?

(d) Our new summer intern wants to add a sellTicket method to this class to sell a

ticket to the first person in line and remove them from the queue. Is this a good design

decision? Why or why not?

 CSE 331 Midterm Exam 2/13/12

 Page 7 of 9

Question 5. (12 points) Testing. In homework 4 one of the questions involved a queue

that was implemented using a finite array as a “circular list”. New items were added at

the end of the array, but after filling the last slot in the array, we wrapped around and

stored the next queue element at the beginning – which worked provided that the oldest

element(s) had been previously removed to make room.

(a) Describe two good black box tests for this queue implementation. The two tests

should be from different revealing subdomains – i.e., they should not detect exactly the

same set of errors. You do not need to give JUnit code – just describe the tests.

(i)

(ii)

(b) Describe two good white box (or glass box) tests for this queue implementation. As

with the black box tests, the two tests should be from different revealing subdomains.

Again, no JUnit code required.

(i)

(ii)

 CSE 331 Midterm Exam 2/13/12

 Page 8 of 9

A few short answer questions…

Question 6. (6 points) Given the representation in an ADT and the representation

invariant (RI) that it satisfies, an abstraction function (AF) describes the meaning of this

representation as an abstract value. Is the AF also a function in the other direction, i.e.,

do the abstract value and the AF determine a unique representation? If yes, give a brief

justification for your answer; if no, give a counterexample explaining why not.

Question 7. (6 points) You are implementing your graph ADT using appropriate

specifications, documentation, JUnit tests, and version control. You find a bug. What

strategy should you use to deal with the problem and ensure it is unlikely to occur again?

(i.e., what steps in the development process should come next after discovering the bug?)

 CSE 331 Midterm Exam 2/13/12

 Page 9 of 9

Question 8. (6 points) Suppose we create an ADT to implement an immutable data

type. The ADT contains only creator, observer, and producer methods – no mutators.

True or false: no method in the ADT can modify the ADTs instance variables once an

instance has been created. Give a brief justification for your answer.

Question 9. (6 points) Java contains both checked and unchecked exceptions. A

method that might cause a checked exception either has to catch the exception or include

a throws clause in its heading to indicate that it might generate that exception. Why

aren’t all exceptions treated this way? In particular, why are there unchecked exceptions

that don’t have to be handled or included in the method’s heading? After all, they are as

much a part of the method’s possible behavior as the checked ones.

Question 10. (1 point – all honest answers receive the point) What is the one question (if

any) that you really thought would be on this test that we forgot to include??

