
Why do Java programmers
wear glasses?

Why do Java programmers
wear glasses?
Because they don’t C#

SLIDES ADAPTED FROM ALEX MARIAKAKIS
WITH MATERIAL KELLEN DONOHUE, DAVID

MAILHOT, AND DAN GROSSMAN

Section 7:
Dijkstra’s Algorithm

Agenda
• Reminders
• HW 6 due last night (5/9)
• HW 7 due next Wednesday (5/16)

• Dijkstra’s Algorithm
• HW 7

Review: Shortest Paths with BFS

Destination Path Cost
A <B,A> 1
B 0
C <B,A,C> 2
D <B,D> 1
E <B,D,E> 2

From Node B

A

B

C D

E

1

1

1

11

1

1

Destination Path Cost
A <B,A> 1
B 0
C <B,A,C> 2
D <B,D> 1
E <B,D,E> 2

From Node B

A

B

C D

E

1

1

1

11

1

1

Review: Shortest Paths with BFS

A

B

C D

E

2

100

2

62

3

100

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost
A <B,A> 2
B 0
C <B,A,C> 5
D <B,A,C,D> 7
E <B,A,C,E> 7

From Node B
2

100

2

62

3

100

Paths are not the same!

Shortest Paths with Weights

BFS vs. Dijkstra’s

BFS doesn’t work because path with minimal cost ≠ path with fewest edges

Also, Dijkstra’s works if the weights are non-negative

What happens if there is a negative edge?
◦ Minimize cost by repeating the cycle forever (this is bad)
◦ How could we fix this?

500

100
100 100

100
5

-10

1
1

Dijkstra’s Algorithm
Named after its inventor Edsger Dijkstra (1930-2002)

◦ Truly one of the “founders” of computer science;

◦ This is just one of his many contributions

The idea: reminiscent of BFS, but adapted to handle weights

◦ Grow the set of nodes whose shortest distance has been computed

◦ Nodes not in the set will have a “best distance so far”

◦ A PRIORITY QUEUE will turn out to be useful for efficiency – We’ll cover this
later in the slide deck

Dijkstra’s Algorithm
1. For each node v, set v.cost = ∞ and v.known = false

2. Set source.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) // if the new path through v is better,update

u.cost = c1
u.path = v

A B

D
C

F H

E

G

0 � � �

�

�

�

�

2 2 3

110 2
3

111

7

1
9
2

4 5

Order Added to Known Set:

Example #1

vertex known? cost path
A Y 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞
H ∞

Goal: Fully explore
the graph

A B

D
C

F H

E

G

0 2 � �

4

1

�

�

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E ∞
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0 2 � �

4

1 �

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ∞
F ∞
G ∞
H ∞

�

A B

D
C

F H

E

G

0 2 � �

4

1

12

�

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0 2 �

4

1

12

�

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ∞
G ∞
H ∞

�

A B

D
C

F H

E

G

0 2 4 �

4

1

12

�

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G ∞
H ∞

A B

D
C

F H

E

G

0 2 4 �

4

1 �

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D

12

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G ∞
H ∞

A B

D
C

F H

E

G

0 2 4

4

1 �

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F

12

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H ∞

�

A B

D
C

F H

E

G

0 2 4 7

4

1 �

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F

12

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H ≤ 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F, H

12

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H Y 7 F

�

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F, H

12

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F, H, G

12

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

12
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F, H, G

11

3

10

111

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2

12
3

7

9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

3

10

111

1

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4 5

Interpreting the Results
vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4 5

Interpreting the Results
vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4 5

Interpreting the Results
vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

2

1
4

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4 5

Interpreting the Results
vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F
2 2

1
4

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4 5

Interpreting the Results
vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H
2 2 3

1
4

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4 5

Interpreting the Results
vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

G

2 2 3

11
4

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4 5

Interpreting the Results
vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

2 2 3

1
3

1
4

A B

C
D

F

E

G

0 �

�

�

�
�

�

2

1
2 5

1
1

1

2 6
5 3

10

Order Added to Known Set:

Example #2

vertex known? cost path
A Y 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2 5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

Example #2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

// pre-condition: start is the node to start at
// initialize things
active = new empty priority queue of paths

from start to a given node
// A path's “priority” in the queue is the total
// cost of that path.

finished = new empty set of nodes
// Holds nodes for which we know the
// minimum-cost path from start.

// We know path start->start has cost 0
Add a path from start to itself to active

Pseudocode

while active is non-empty:
minPath = active.removeMin()
minDest = destination node in minPath

if minDest is in finished:
continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e
add newPath to active

add minDest to finished

Pseudocode (cont.)

Priority Queue
Increase efficiency by considering lowest cost unknown
vertex with sorting instead of looking at all vertices
PriorityQueue is like a queue, but returns elements by
lowest value instead of FIFO

Priority Queue
Increase efficiency by considering lowest cost unknown
vertex with sorting instead of looking at all vertices

PriorityQueue is like a queue, but returns elements by
lowest value instead of FIFO

Two ways to implement:
1. Comparable

a) class Node implements Comparable<Node>

b) public int compareTo(other)

2. Comparator
a) class NodeComparator extends Comparator<Node>

b) new PriorityQueue(new NodeComparator())

Homework 7
Modify your graph to use generics

◦ Will have to update graph and old tests!
◦ (all of your old tests should still pass)

Implement Dijkstra’s algorithm
◦ Note: This should not change your implementation of Graph. Dijkstra’s is

performed on a Graph, not within a Graph.

Homework 7
The more well-connected two characters are, the lower the weight and
the more likely that a path is taken through them

◦ The weight of an edge is equal to the inverse of how many comic books the
two characters share

◦ Ex: If Amazing Amoeba and Zany Zebra appeared in 5 comic books together,
the weight of their edge would be 1/5

Hw7 Important Notes!!!
DO NOT access data from hw6/src/data

◦ Copy over data files from hw6/src/data into hw7/src/data, and access data
in hw7 from there instead

◦ Remember to do this! Or tests will fail when grading.

DO NOT modify ScriptFileTests.java

Hw7 Test script Command
Notes
HW7 LoadGraph command is slightly different from HW6

◦ After graph is loaded, there should be at most one directed edge from one
node to another, with the edge label being the multiplicative inverse of the
number of books shared

◦ Example: If 8 books are shared between two nodes, the edge label will be
1/8

◦ Since the edge relationship is symmetric, there would be another edge going
the other direction with the same edge label

